
RL-TM-97-2
In-House Report
October 1997

A METHODOLOGY FOR
ASSESSING SOFTWARE
RELEASABILITY

Matthew J. Kochan

APPROVED FOR PUBL/C RELEASE; D/STR/BUT/ON UNLIMITED.

mW> M° ^Jtv QBa|g»pw> -\

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RL-TM-97-2 has been reviewed and is approved for publication.

APPROVED
: ^udJCMM

MICHAEL A. WELCH
Chief, Intelligence Data Handling Division
Intelligence & Reconnaissance Directorate

FOR THE DIRECTOR:

JOSEPH CAMERA
Technical Director
Intelligence & Reconnaissance Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please notify
Rome Laboratory/TRD, Rome, NY 13441. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data scuic
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of ;
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 jeffet!
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881. Washington, DC 20503.

1. AGENCY OsE ONLY (Leave blankl 2. REPORT DATE

October 1997
3. REPORT TYPE AND DATES COVERED

In-House
4. TITLE AND SUBTITLE

A METHODOLOGY FOR ASSESSING SOFTWARE RELEASABILITY

6. AUTHOR(S)

Matthew J. Kochan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rome Laboratory/IRD
32 Hangar Rd.
Rome, NY 13441-4114

5. FUNDING NUMBERS

PE - 31335F
PR - 2183
TA - PR
WU-OJ

8. PERFORMING ORGANIZATION
REPORT NUMBER

RL-TM-97-2

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/IRD
32 Hangar Rd.
Rome, NY 13441-4114

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TM-97-2

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Matthew Kochan/IRD/315-330-4696.
Master's Thesis.

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A distinct challenge of software engineering is the tradeoff between developing a high quality software product and
delivering it on schedule. This thesis proposes a new methodology which addresses this tradeoff. The term "releasable"
software is introduced as a product which demonstrates a fault content acceptable to users in the field. The releasability
assessment methodology capitalizes on basic testing metrics, software reliability modeling, statistical analysis tecluiiques,
and program specific criteria to present an objective estimation of the software release date. It is illustrated as an
adaptive series of detailed procedures tailored to the unique needs and assumptions of the program. A division of Rome
Laboratory recognized for medium-large scale software development provides the perspective for investigating finer
points of the methodology. A notion of Configuration Reliability and the importance of system configuration
management are presented. The impact configuration problems can have on software testing is discussed and a root
cause analysis technique is recommended for achievement of optimal releasability. The effectiveness of the releasability
assessment methodology is demonstrated by applying it to an actual software program within Rome Laboratory.
Characteristics applicable to die program's software development environment and the nature of the testing metrics are
discussed. These provide the basis for the analysis of testing trends, selection of software reliability models, and
estimation of the software release date. The assessment reveals the practicality of the methodology and demonstrates
procedures and results suited for software development managers.
14. SUBJECT TERMS

software reliability, modeling, assessment methodology, testing metrics, system
configuration, software releasability
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

 100
16. PRICE CODE

20. LIMITATION OF ABSTRACT

U/L
Standard Form 298 (Rev. 2-39) (EG)
Prescribed by ANSI Std. 239.1 B
Designed using Psrform Pro. WHS/DIOR. Oet 34

LIST OF ILLUSTRATIVE MATERIALS • »■»1

1. INTRODUCTION AND BACKGROUND 1

1.1 OBJECTIVES AND PROBLEM DEFINITION '
1.2 BACKGROUND 2

1.3 ENGINEERING RELEASABLE SOFTWARE A REVIEW 3
1.3.1 Testing 4
1.3.2 Software Reliability Modeling 5
1.3.3 Estimator Models M
1.3.4 System Configuration 14

1.4 SOFTWARE MATURITY ASSESSMENT 15
1.4.1 AFOTEC Approach 16
1.4.2 Goel/Yang Approach 17

1.4.2.1 Step 1 - Statistical Trend Analysis 17
1.4.2.2 Step 2 - Software Reliability Modeling 18
1.4.2.3 Step 3 - Readiness Assessment 18

1.4.3 Evaluation 1&
1.5 THESIS ORGANIZATION 19

2. SOFTWARE DEVELOPMENT ENVIRONMENT 21

2.1 RL/IRD 21
2.2 DEVELOPMENT PROCESS CHARACTERISTICS 23
2.3 SYSTEM CONFIGURATION ANDSOFTWARE TESTING 27

2.3.1 Configuration Reliability 30
2.3.2 Root Cause Analysis 31

3. PROPOSED METHODOLOGY ~ »34

3.1 OVERVIEW 34
3.2 GROUP S - STATISTICALANALYSIS 36

3.2.1 Procedure SI - Graphical Trend Analysis 37
3.2.2 Procedure S2 - Laplace Test 37
3.2.3 Procedure S3 -Mathematical Trend Analysis 38

3.3 GROUP M - MODELING --39
5.5.7 Procedure Ml - Candidate Models 39
3.3.2 Procedure M2 - Parameter Estimation 44
3.3.3 Procedure M3 - Model Evaluation 52

3.4 GROUP R - RELEASABILITYASSESSMENT 53
3.4.1 Procedure Rl - Assessment Case 53
3.4.2 Procedure R2 - Graph Future Trends 54
3.4.3 Procedure R3 - Release Date Estimation 55

3.5 METHODOLOGY DESCRIPTION 55
3.6 METHODOLOGY FEATURES 57

4. RELEASABILITY ASSESSMENT OF RL/IRD SYSTEM X 59

4.1 OVERVIEW OF SYSTEM X 59
4.2 FAILURE DATA INTERPRETATION 60
4.3 METHODOLOGY APPLICATION 62
4.4 OBSERVATIONS 82

5. CONCLUSIONS AND RECOMMENDATIONS 83

5.1 CONCLUSIONS 83
5.2 RECOMMENDATIONS 84

APPENDIX A: BACKGROUND MATERIAL ON PROBABILITY & RELATED CONCEPTS85

BIBLIOGRAPHY 90

BIOGRAPHICAL DATA 92

li

LIST OF ILLUSTRATIVE MATERIALS

List of Tables

Table 1 - Operating System Evaluation 15

Table 2 - Overview of Groups and Procedures Used in Methodology 36

Table 3 - Severity Scales and Definitions for AFOTEC and System X 61

Table 4 - Mean Value and Intensity Functions for Candidate Models 65

Table 5 - Release X.b Cumulative Test Results Data 73

List of Figures

Figure 1 - Test Finding Analysis, Repair, Metrics 29

Figure 2 - Basic Methodology Layout 35

Figure 3 - Complete Methodology 56

Figure 4 - Open Failures "74

Figure 5 - u{k) Open 75

Figure 6 - Closed Failures 76

Figure 7 - Open Models 77

Figure 8 - u(k) Closed 78

Figure 9 - Closed Models 79

Figure 10 - Open/Closed Models and Actual 80

Figure 11 - Closure Projections 81

xxi

1. Introduction and Background

The software development industry faces a challenge which is among the most difficult in

the entire marketplace. In a world being overtaken with computer systems, software is

regarded as "the system element which is the most difficult to plan, least likely to succeed,

and most dangerous to manage." [1] Many strategies have been proposed to help "tame

the software monster". Those founded on fundamental concepts, such as the need to

measure and the importance of process, are demonstrating very promising results.

However, much like the Information Revolution, the momentum software has achieved also

happens to be one of its struggles. With popularity comes a tidal wave of new ideas and

practitioners overwhelmed with no clear choices. In this thesis we attempt to define some

technically sound, clear choices for those challenged with the task of developing a software

product for a customer. This first chapter presents the problem, states our objectives, and

provides a review of relevant material.

1.1 Objectives and Problem Definition

The primary contribution of this thesis is a new methodology for assessing software

releasability. We define "releasable" software as a product which demonstrates a fault

content acceptable to users in the field. The growing popularity of collecting metrics has

unveiled a wealth of data on the status of development activities. In many cases, this data

is under utilized. We propose a procedural analysis of basic testing metrics data,

establishment of releasability criteria, and estimation of the release date using software

reliability models. We also offer some ideas on the importance of viewing tested software

as part of a tested system. These ideas, coupled with the methodology, can empower

software development managers with new objective anaiysis and.estimation techniques so

they can make better informed decisions.

1.2 Background

The concept of software reliability was first introduced in 1967 by Hudson. During these

past 30 years it has evolved from a field which intrigued primarily theoreticians to one

which is finding increasing acceptance within industry. One of the more recognizable

products of the academic and industry research are software reliability models. However,

most of these were developed 15-25 years ago. In fact, according to a recent survey only

7% of 98 companies are implementing or had implemented software reliability models [21.

This indicates a need to simplify techniques which evaluate and accurately estimate

development progress using models.

Microsoft uses a metrics-based check.ist to help determine feature and product completion.

They also require that the bug detection rate and bug severity shou.d be decreasing and

there shou.d be no »must fix bugs» detected during sustained testing in the last week prior

to the release. [3] Microsoft seems to have the right attitude about delivering quality. Of

course given the market share and wide distribution of their products it makes sense that

they would take a simple (their reusability criteria is certainly not advanced or

completed, and patient approach to the situation. However, most software development

organizations, certain,y those in the DoD, do not have the freedom of such an open ended

schedule like Microsoft.

Musa has developed a methodology known as SRE (Software Reliability Engineering). ,t

consists of 5 steps: Define «Necessary» Reliability, Develop Operational Profiles, Prepare

Test Cases, Execute Tests, and Interpret Failure Data. The interpretation of failure data is

based on identifying bands in the failure intensity charts which indicate ranges for rejecting

the software, continuing with testing, or accepting it and deciding to field. [4] This

methodology is much more thorough than Microsoft's but it basically does the same thing,

indicate whether the software is ready to ship or not. A technique for determining

approximately when the "necessary" reliability will be reached is missing.

Some methods which help determine releasability are software fault tree analysis (SFTA)

and failure modes effects and criticality analysis (FMECA). [2] Farr has developed a tool,

known as Statistical Modeling and Estimation of Reliability Functions for Software

(SMERFS), which automates several software reliability models and produces trend and

metric results. [5] The difference between this and our proposed methodology is that it's

confined to the software reliability models which are integrated into the tool.

Goel and Yang have developed a software reliability assessment approach which is closest

to a much needed methodology for software releasability. Their approach is the foundation

for our proposed methodology. Because of this relationship, we will be describing it in

more detail later as a separate section in Chapter 1.

1.3 Engineering Releasafole Software: A Review

Releasable software can also be regarded as software which satisfies all the release criteria.

It satisfies the basic functionality needs of the user. It contains the quality necessary to

support a minimal maintenance budget. It also is available for distribution near the time

period which was originally announced. In this section we review the relevant material

pertaining to the testing of a software product, assessment of the test data, and decision

on whether to distribute the softw
are or send it back for repairs and more testing. Also

included is a review of some basic concepts which contrib
ute to these activities.

1.3.1 Testing

Testing is an integrated se, of software quality assurance aotivities tha, must be applied

aoross the entire life-cyole of product development. Its stretohes from verifying

retirements satisfaction to demonstrating product quality to benchmarking performance ,o

Investigating impacts of proposed changes. While these activities are vita, ,o producing

high quality software products, they reaily are no, the „ue purpose Casting. Software

testing is simply a process which confirms the presence software defects. This data is

ganerally coHected in one of two ways: the number „, faiiures in a specified time intarva, or

test run (Failure Count ,FC) data), or the amount of time betwoan failures (TBF data). Also

»f interest is the criticaiity or severity o, the failures. By establishing a scaie to represent

«be severity „, . ,ailure (e.g. high, medium ^ ^ ^ ^ ^ ^ ^ ^

precise picture of the software status. The vaiue (weigh,, assigned to severity leveis for

use in calculations must be in accordance with ,he operational profile of ,he software. For

example. ,h. quanti.ative diffarence between high severity and low severity for a system

onboard a „„dear submarine should be considerably greater than one for a word processing

package.

I. is we,, known tha, testing alone wil, no, ensure quality software. Testing on,y finds

faults, it does not demonstrate that faults do

characteristic of testing: complete test

not exist. This double-negative implies a key

coverage of a complex product, such as a software

Program, is unachievab.e due to practica, limitations. There are so many states a software

program can reach that it is virtuaKy impossible to test them a... The test states can be

thought of as combinatorily explosive. Increased path testing, also known as white box

testing, can help detect many otherwise hidden defects. However, a test process is

generally constructed under cost and schedule constraints. So realistically, it is pretty

much guaranteed that some defects will remain hidden in the software. In the releasability

assessment part of the methodology we will discuss the option of assuming whether

undetected defects are present or not.

1.3.2 Software Reliability Modeling

While testing data is required as input for most software reliability models (referred to as SR

models), it is not necessary for all of them. There are really two (2) broad categories of SR

models, predictors and estimators. Predictors take into account characteristics about the

entire software development effort and use them to predict the software reliability during

system testing even before software coding begins. Estimators are used to estimate future

failure patterns based on experienced failure patterns from on-going testing. Goel defines a

SR model as a probabilistic expression that describes the error detection or failure

occurrence phenomenon. [6] In this section we will touch on the characteristics of this

definition in an attempt to establish some common ground before presenting approaches

and methodologies which incorporate SR modeling. Additionally, some key concepts in

probability are presented in Appendix A.

Software Reliability: There are many definitions for this term:

• "The probability of failure-free operation of a computer program for a specified time in a

specified environment." [7]

. "The probabiiity that software will not cause a system failure for a specified time under

specified conditions. The probability is a function of the inputs to, and use of, the

system as wel. as a function of the existence of faults in the software. The inputs to

the system determine whether existing faults, if any, are encountered." - IEEE [2]

• Defining 'reliable software' instead of 'software reliability': «Reliable software is a

function of (1) ability to meet requirements, (2) ability to perform under a variety of

inputs and environments, (3) ability for faults to be maintained, (4) ability for the

software to be tested and verified, {5, ability for the software to continue functioning

once a fault has been encountered." [2]

• "We wan, ,„ be sure that software „,„ perform „s intended function, bot car™,

euaran.ee ,t. This uncertainty can be expressed as ,he probab.,jty ^ ^^ ^

perform its intended function for a specified time." [8]

Although the styie of these definitions differ considerably, they ,„ indicate tha, software is

a measure o, how effectively end efficiently the software does „s intended Job. The same

measure oen reaiiy be appiied to anything (or anyone, responsible for acoompiishing a set of

«asks. However, reliability evaluation techniques are no. applicable across domains.

Hardware reiiabiiity evaluation techniques do no, directiy appiy ,„ software 09cause of ksy

differences between hardware and software. Software components do no, wear down,

software errors cannot be temporarily „xed and then reappear, and most errors are only

detectabie „hen certain inputs occur. Our focus is specificaily on the „eid of software

reliability. However, since software requires hardware for operation, „e briefly address

system reliability as i, relates to software. Musa points ou, that software reiiabiiity

measures represent a user-oriented view o, software quaiity. He describes reliability as a

much richer measure. It takes account of the frequency with which problems occur. It

relates directly to operational experience and the influence of faults on that experience.

Hence, it is easily associated with costs. It is more suitable for examining the significance

of trends, for setting objectives, and for predicting when those objectives will be met. [7]

Considering the entire life-cycle, this comparison of reliability to fault measures is quite

appropriate. However, for the system test phase these measures are quite similar. We will

consider the number of problems detected through testing and their associated criticality

and use that information to assess whether the software is reliable enough to release or

not.

Software Reliability Modeling: The purpose of SR models is to provide a tangible

representation of what the software reliability will be in the future. For predictor models the

future is long term, for estimators it's relatively short term. Predictor models use empirical

data rather than project data (e.g. from testing) to actually predict what the software

reliability will be during the latter stages of development and testing. Predictive modeling is

most applicable during the early stages of a program like requirements analysis and design.

There are only a few predictor models because they are expensive to develop and require

access to large amounts of data from multiple programs spanning a multitude of

environments. Once such model, developed by Rome Laboratory, is described in [91. Its

model equation is defined as R = A x D x S. fi represents the number of faults per

executable lines of code. A is a factor determined by using a lookup chart. D is determined

by answering questions in a checklist. The checklist attempts to quantitatively assess the

degree of structure in the development organization much like the SEI Capability Maturity

Model does. S is defined as SA x ST x SQ x SL x SM x SX x SR. SA represents how

software anomalies (test findings) are managed. ST" is the requirements traceability

indicator and SQ is the quality indicator. SL is the coding language indicator. SM is the

code modularity indicator. SX is the code size indicator and SR is the code review

indicator. Each of these are determined via checklists and/or lookup charts. One shortfall

of this model is that its reliability measure, number of faults per executable lines of code, is

no longer regarded as an accurate representation of true reliability. Therefore, this model

only seems useful if i, it encourages an organization to optimize as many of the factors as

possible, and 2) it is used in combination with an estimator model later in the life-cycle. It

is likely that other predictor models have been generated by private industry but they are

kept confidential in order to maintain their corporate edge. In fact, the Microsoft rules of

thumb described earlier are probably generalizations of predictor model outputs based on

Microsoft projects over the years.

Comparatively speaking, there have been many more estimator SR models than predictor

models developed over the last 25 years. While some are high.y regarded and considered

classics, others have been invalidated because they made improper assumptions, were

inaccurate, or were impractical to implement. Estimator models project the rate of fault

detection/removal throughout the remainder of the software development effort in terms of

schedule increments such as time or test runs. They rely on fault data gathered during

testing, in most cases system testing.

Terminology: The terms problems, errors, defects, faults and failures are used

interchangeably in software reliability literature and practice. However, these terms actually

have different meanings:

• error - a discrepancy in implementing requirements or design specification. Generally, a

human action which causes the software to contain a fault, {an example would be the

programmer forgetting that for a/b, b = 0 causes a problem}

• fault - the manifestation of an error. Improper coding (i.e. a "bug") that , when

executed under particular conditions, causes a failure, {coding c=a/b without

preventing calculation of c with 6 = 0}

• failure - the manifestation of a fault. The execution of a fault which causes

unacceptable results or operation, {c calculated with 6 = 0 and event crashes}

• defect - a fault that's found during/after the system testing phase. Some more

"progressive" companies call a fault found before the system testing phase a 'save'.

• problem - an unexpected outcome discovered while testing/using the software.

In practice, when a problem is encountered a Software Problem Report (SPR) is generated.

The term "opened" is used to describe the generation of these reports. Open SPRs are then

analyzed and either rejected (not really a problem - rather a misunderstanding of the

tester/user, or a duplicate of an earlier SPR), converted to a Request for Change (RFC)

which documents that the problem is introduced by an external source {e.g. another

software product), or left open for fixing. When a test is run and the particular failure no

longer occurs, the SPR is "closed". In this thesis we will primarily use failure as the final

product of testing. However, because failures are reported via SPRs they will sometimes be

referred to as problems.

1.3.3 Estimator Models

There have been a number of different approaches to classifying different types of

estimator SR models. One suggested by Musa et al Cairns that these mode.s can be

classified by 5 different attributes: „ time domain - failure data collected against calendar

time or execution time (CPU or processor); 2) category - the number of failures which can

be experienced in infinite time is either finite or infinite; 3) type - the probability distribution

type obtained when observing the number of failures over time; 4) class - the functional

form (i.e. continuous distribution function type such as exponential. Weibull, Gamma, etc.)

of the failure intensity versus time or the failure time distribution of an individual fault (this

applies to the finite failure category only,; and 5) family - the functional form of the fai.ure

intensity in terms of the expected number of failures experienced (this applies to the infinite

failure category only). Since their classification scheme applies identical.y for both time

domains, the other 4 are the attributes of interest. A SR mode, fa.ls into one »category»,

finite failures or infinite failures.

Under the finite failures category a mode, is classified by its »dass» and its "type". As

suggested above, the «class» represents the classic distribution (i.e. Exponential, Weibu.l,

C1, Pareto, and Gamma) evident in the failure intensity vs. time plot. Descriptions of some

of these classic distributions are given in Appendix A. The »type» represents the discrete

probabiiity distribution of the number of fai.ures over a given time. The two most common

discrete distributions are Poisson and binomial, these are also described in Appendix A. The

easiest way to determine the mode, type is to consider one basic assumption: if imperfect

debugging is assumed then use a Poisson-type model, if not, use a binomial one. A detailed

explanation of this can be found in [7].

10

Under the infinite failures category a model is classified by its "family" and its "type". The

"family" represents the classic distribution (i.e. geometric, inverse linear, inverse

polynomial, and power) evident in the failure intensity vs. expected number of failures.

Information on these distributions can be found in books such as [101. Just as in the finite

failures category, the "type" represents the discrete probability distribution of the number of

failures over a given time. However, when considering infinite failures, the distributions do

not fit the classic styles other than Poisson, so Musa et al refer to the others as Type 1, 2,

and 3.

Using the above model classification scheme, we find that the greatest concentration of

well-known SR models in any one class-type combination is the exponential-Poisson

category. There are also a number of binomial-type models such that each class is

represented. The Poisson-type model is also more common than any other for the infinite

failure models. [7]

Goel takes a much simpler approach in classifying models. He suggests that models are

best classified according to the type of failure data, i.e.: 1) Times Between Failures (TBF),

2) Failure Count (FC), 3) Fault Seeding (FS), and 4) Input Domain Based (!DB). TBF and FC

concepts were discussed earlier. FS models are based on the principle of applying a

relatively small known number of faults to a software program with an unknown number of

indigenous faults and estimating the actual number of faults based on the ratio of seeded

faults to indigenous faults discovered during a test period. A concern with this approach is

the potential inability to completely remove all traces of the seeded faults once testing is

complete. Due to the complexity of software, the use of such a model could actually

reduce software reliability all by itself. [2]

11

IDB models are based on generating test cases from an input distribution representative of

the operational profile. The input domain is then broken into equivalence classes usually

based on major program paths. The estimated reliability is then obtained from the failures

found while executing a random sample of test cases covering the equivalence classes. A

shortfall of this type of model is that it only gives estimated current reliability, it does not

estimate future reliability. This model and the FS model are regarded as static SR models

since they only look at the present.

No matter which proposed model classification scheme one considered, the essence of the

SR model is its mathematical foundation. The models are essentially a collection of one or

more analytical expressions. The key expressions are:

• Mean Value Function - average number of cumulative failures per unit of time.

• Failure Intensity Function - represents the rate of change of the mvf with respect to

time and is an instantaneous value.

• Hazard Function - hazard rate with respect to time.

• Probability Distribution of Failure Intervals.

The parameters of these analytical expressions vary from model to model. Following is a

list of common parameters used in SR models:

• number of inherent faults in the software {fixed or variable)

• number of faults detected at time t

• number of faults corrected at time t

• acceleration of faults, i.e. rate of change in failure intensity

12

• failure rate (initial and present)

• hazard rate

• growth rate

• proportionality constant

The hazard rate and failure rate are parameters that deserve special mention. We point

these out because there seems to be some confusion surrounding the use of the term

hazard rate. It can be described in many ways: the instantaneous rate of faifure at time t,

the limit of the failure rate as the sample interval approaches zero, the conditional failure

density, the failure pdf at time t divided by the reliability function at time t. While hazard

rate really is different from failure rate, most SR books use the terms interchangeably.

Failure intensity, described above, is another term that is different, yet used interchangeably

with failure rate and hazard rate. However, when approaching SR from a practical

perspective, its not necessary to be concerned with their slight mathematical differences.

Failure rate, hazard rate, and failure intensity simply indicate the frequency of failure

discovery during testing. A software developers objective is to have this failure frequency

as low as possible.

A substantial number of well-known SR models have been developed in the last 25 years.

A consolidated list based on the references in the bibliography suggests at least 20

different models are available. There are probably others which have not been publicized

because companies develop and use them to maintain a competitive advantage. Even so,

there are a variety of models to accommodate the variety of software development

programs. We will be considering these when we review our software development

environment focus and perform the releasability assessment.

13

1.3.4 System Configuration

In order to effectively test software, a number of individual hardware, software, and

network components must work together. These are commonly referred to as a system.

Hardware consists of CPUs, volatile and non-volatile storage devices, and I/O devices.

Software contains binaries (e.g. compiled C code, and installation/configuration scripts (e.g.

C shell or Pear, scripts,. The network consists of the communication medium (e.g. Ethernet

LAN, FDDI, etc., and other pieces such as an Network File Server (NFS, computer.

However, one other component exists which is often ignored, the operating system (OS,. It

is in a rather unique position. It's not convincingly part of the hardware, software, or

network components, yet it does not seem to deserve an entity of its own. After all, the

OS ties everything together. It is the core which facilitates the cooperation of the

hardware, software, and network and enables the system to fulfill its purpose. The term

which is used to describe this cooperation of the hardware, software, and network is the

"system configuration». Therefore, since the core of a configuration is the operating

system, it defines our perspective on the system configuration issue.

The OS candidates for a majority of the systems world are: DOS/Windows, MacOS,

Unix/X-Windows, and Windows NT. These can be compared based on four criteria: ease

of use, tailorability, performance, and manageability. Table 1 shows the evaluation of each

OS against these criteria.

14

Table 1: Operating System Evaluation

Ease of Use Tailorability Performance Manageability

DOS/Windows high medium low high

MacOS high low low high

Unix/X-Windows low high high low

Windows NT medium high medium medium

The tailorability and manageability are the prime motivators behind our interest in

configuration. Configuration is much less of a concern for DOS/Windows and MacOS

environments. It is more of a concern for Windows NT environments. In fact, the whole

idea behind Windows NT is to bridge this gap. Unfortunately, the relative immaturity of its

use in the computing world makes it difficult to measure and analyze. However, for both

system users and developers, configuration issues demand attention in any Unix/X-

Windows based system.

1.4 Software Maturity Assessment

Software maturity is defined as the measure of a software product's progress towards

satisfying user requirements. [11] This is admittedly very similar to our definition of

software releasability. The primary difference is in the connotation each one offers. The

term "maturity" implies a level of sophistication and quality which can always be improved.

Therefore, fully mature software can never be realized. Releasability, on the other hand,

can be achieved. A software product can be determined to be fully releasable. These

differences aside, maturity/releasability assessment is the process in which test results data

15

are obtained, analysis are performed, and decisions on subsequent step are made. In this

section we will review two assessment approaches. The first approach (AFOTEC)

concentrates on determining if a product is currently ready for the next step. The second

approach (Goel/Yang) assists in estimating when the product is expected to be ready for

the next step. This approach is the foundation for the detailed methodology proposed in

this thesis.

1.4.1 AFOTEC Approach

The Air Force Operational Test and Evaluation Center (AFOTEC) is an independent test

agency responsible for testing Air Force and multi-service systems under operationally

realistic conditions. One of their charters is to perform a software maturity evaluation and

determine if a system is ready to proceed to Operational Test and Evaluation (OT&E). An

underlying philosophy of maturity is that the rate and severity of software changes (which

include enhancements as well as fixes, shou,d be decreasing over time. They suggest a

weighting scheme be employed for some trends which factors in the severity of the

changes. The values produced by multiplying changes of a given severity level by their

respective weighting factor are called "change points». While [11] suggests depicting

accumulated open, closed, and remaining changes versus test periods as an effective

equation tool, it also acknowledges other factors to consider. For instance, the program

schedule, test rate, test completeness, requirements stability, and change density are a few

of the factors (metrics) which contribute to total software maturity. We feel the current

AFOTEC software maturity evaluation techniques are very effective for analyzing recent

maturity status, however, they do not address estimating when the software is expected to

be ready, i.e. mature enough, for OT&E.

16

1.4.2 Goel/Yang Approach

A new approach to software maturity assessment, which addressed future trend

estimation, was investigated in [12]. It consists of a comprehensive three step approach

which accommodates evaluators interested in only basic estimation techniques to those

desiring to employ software reliability modeling techniques. The basis for this approach is

the need for a basic set of steps to help a development organization estimate when the

software being tested will meet the criteria established for being mature enough to proceed

to OT&E. The mathematical basis for this approach is the application of statistical trend

tests and software reliability models. The design of the approach is simply 3 steps that

need to be applied iteratively during software testing. The input to the 3 steps is failure

data, the output is an estimation of time it will take to reach the maturity goal. In keeping

with AFOTEC's concepts, the change data can be weighted or unweighted and is

represented as change points. However, since failures are almost exclusively the product

of testing, the approach describes changes simply as "failures" but mixes references to

change points and weighted failures. Each step in this approach is described in a separate

subsection below.

1.4.2.1 Step 1 - Statistical Trend Analysis

Provides both graphical and statistical trend test techniques which can be used to

determine if the software failure rate is improving, steady, or deteriorating. When an

improving trend is evident, the failure process is determined to be ready for the next step of

modeling. The suggested statistical technique is based on the Laplace Trend Statistic

(LTS). The choice of the LTS is derived through considering different combinations of null

and alternate hypothesis. The combination of the Homogeneous Poisson Process with a

17

monotonic trend is singled out as the best representative of the software reliability

paradigm and the Laplace test is identified as the most popular test for this combination.

Additionally, the LTS is also identified as a means of obtaining data to fit Non-

Homogeneous Poisson Process (NHPP) models to the failure curve.

1.4.2.2 Step 2 - Software Reliability Modeling

Suggests the selection of an analytical model which best represents the current software

failure trend. NHPP models are suggested as the most appropriate candidates for modeling

the stochastic behavior of software failures during system testing. The LTS data from Step

1 is used to help estimate the parameters of the model's mean value function. Once the

candidate models are fitted to the failure curve, the one with the closest fit is chosen as the

optimum model.

1.4.2.3 Step 3 - Readiness Assessment

The readiness assessment considers 4 cases. They cover the different combinations of 2

factors: assumption of unobserved failures (yes or no) and failure closure rate (average or

modeled). If it is assumed there are unobserved failures, the model chosen in Step 2 is

applied. Otherwise the cumulative number of failures (i.e. change points) opened up to the

time of the assessment is fixed. The failure closure curve is then extended at the average

closure rate or replaced with another model chosen via Step 2. Once the case is chosen

and applied, the estimated time to get to the maturity goal is calculated.

1.4.3 Evaluation

The most significant contribution of the Goel/Yang approach is its incorporation of the

major elements of software reliability modeling. It demonstrates the effectiveness of using

models to depict future behavior of the testing process and thus estimate when the

software will achieve the desired maturity level. The accommodation of different

assumptions allows the approach to be applicable to a variety of software development

environments.

In reviewing this approach and applying it to actual software development efforts, we

recognized a number of underlying steps which were not considered. We also noticed that

many steps were not applicable if a particular assessment case was chosen. Finally, we

realized that the only way a new methodology would be accepted by practitioners, is if it

were demonstrated against an actual program. Each of these observations provided the

framework for this thesis.

1.5 Thesis Organization

This thesis is divided into 5 chapters. The purpose of the current chapter is to present the

need for a releasability assessment methodology and provide some background material.

Chapter 2 describes a particular software development environment and proposes for such

an environment the system configuration plays an important role the releasability

assessment. The characteristics of this environment provide the framework for the

methodology description and application.

Chapter 3 contains the new methodology. It first describes the functional groups and the

detailed procedures within each group. Then it presents the methodology as step-by-step

progression of procedures tailored to each assessment case. A depiction of the

methodology and a highlight of its features is also given.

19

Chapter 4 demonstrates the effectiveness of the methodology by applying it to an actual

software development program. The program, denoted System X, is part of the software

development environment described in Chapter 2.

Chapter 5 provides some concluding remarks and suggests some recommendations based

on the research.

20

2. Software Development Environment

This chapter describes the technical characteristics of the software development

environment used to provide the framework for the methodology description and

application. We first describe the mission of the developing organization (RL/IRD) and

explain software development characteristics which pertain to the methodology. The

second part of the chapter illustrates the importance of factoring system configuration into

the software testing process. It proposes an analysis technique which ensures that

software testing is not corrupted by continuing system configuration problems.

2.1 RL/IRD

RL/IRD is the Intelligence Data Handling Division at Rome Laboratory. Its primary mission is

to cultivate technology which has both near-term and long term benefits to the Department

of Defense (DoD). In addition to Research and Development (R&D) activities, they develop

systems used in the field (i.e. military installations) to support operational intelligence

activities. The group which is responsible for all life-cycle activities of a system is called

the program office.

Over the last ten years, RL/IRD systems development has evolved into primarily software

development. More and more often the field sites have been faced with declining budgets

and can not afford to purchase a separate hardware platform for every system that is

installed. They require the systems developers to develop software which can be installed

and executed on hardware platforms already at the site, often already containing a number

of other commercial and Government software products. Throughout this period a majority

of our software products have been designed to operate in a client-server mode. Recently,

21

issues,

ever

the DoD systems architecture has also expanded into Internet-based computing. The

Intelligence community has a secure network architecture emulated after the Internet. The

products being developed for this architecture have introduced new challenges and

For instance, the ability to develop and field these software products much faster than

before is encouraging a less disciplined approach. This can translate to fielding software

which is not ready for release.

The commercial world's success in developing general purpose information systems

technology has enabled RL/IRD to incorporate Commercial Off-The-Shelf (COTS) products

into systems solutions rather than develop it themselves (Government Off-The-Shelf

(GOTS)). So now the term "software engineering" takes on new meaning: RL/IRD is

engineering a software product that is partially developed and partially delivered to them in

a shrink wrapped package. In most cases this shrink wrapped product does not include

design documentation and its developer probably does not consider their needs to be

paramount. From a total product quality standpoint (COTS and GOTS), there more

unknowns than ever and consequently more risk in delivering a well-integrated and reliable

product to the users.

The RL/IRD software development process is driven by government standards, program

office quality requirements, budget and schedule. Beginning with the requirements

allocation to a particular release, the program office is required to generate a firm date as to

when the software will be available for installation at all field sites requesting it. Once this

date is published, a number of interdependencies come into play between parties like the

requirements analysis team, coding team, in-plant test team, field sites, and the certification

test agencies. Generally, the milestones which are the most important to make are the test

22

events involving field site representatives and the certification test agencies. If these dates

are forced to be slipped, due to slow development progress for whatever reason, it can

become very difficult to arrange new dates because of conflicts with the testers, facilities,

and milestone decision authorities' schedules. Therefore, delays to completion of phases

like coding often shrink the time span for the next phase in order to stay on schedule.

Basic metrics such as percent completion are used to monitor progress during the phases

leading up to system test. During system test, progress is based on number of test cases

completed and failure data such as number of failures per each severity level. A 3-leveI

severity rating scale is used. System test includes test runs involving just the developers

test team, then the program office, and then the testers representing the field sites. Once

these are complete the software release goes through a series of specialized certification

tests conducted by various Government agencies {known as "Beta I testing"). If these are

successful the program office presents the testing results to a panel of high ranking

Government officials in order to get approval to install the software at a Beta II site. All of

these events are required to be scheduled well in advance and more often then not a sfip

requested by the program office results in a longer slip because of schedule rearrangement

conflicts. Thus, confidently knowing when the software will be ready to release to an

external group, in this case the Beta test groups, is important for all RL/1RD programs.

2.2 Development Process Characteristics

An explanation of the methodology with references to practical application would become

too complex and divergent if it were not constrained to a particular environment. The point

would be lost if we had to consider every possible case in applying the methodology.

23

Therefore, we will derive some basic testing, reliability, and modeling assumptions in

considering RL/IRD product development as our point of reference:

TESTING: Testing is conducted over multiple test runs in which each run is not defined by

time but by completion of a set of test procedures. The testing is not identical from test

run to test run because of optional inputs by the testers and the evolution of the procedures

from a focus of rigorous requirements verification early on to functional verification later on.

Test results data reporting can be in terms of test runs or time periods.

Since the products are primarily client-server based, where code is executed both on the

server CPU and client workstation CPU, testing against CPU processor time is really not

applicable. The test time domain is represented in terms of the test run itself, i.e. each run

is a unit of time.

Since testing is by runs, it makes sense to gather test data by the failure count (FC)

occurring over a test run, rather than by the amount of time between failures (TBF). FC

test results can also be reported over fixed time increments, e.g. weeks or months.

Faults which need to be removed in order to test other parts of the software are repaired

immediately. Priority 1 and 2 failures which can be repaired after the test run will be

delayed until then. Priority 2 and 3 failures which have minimal or no impact on future

testing may not get fixed at all.

The test procedures are representative of the operational usage of the software. This is

true of both integration test procedures which verify requirements and Site Acceptance

Test procedures which test high level functionality.

24

The failure data that is collected and used comes from the test runs during the system

testing phase of the software development life cycle. This includes CSCI, System, and

other subsequent in-plant tests.

RELIABILITY: Even though the end product supporting the users is a system, our focus is

on the software portion of the system. System reliability will be mentioned in the next

section but software reliability will remain our primary concern.

While new faults can be introduced during the fault removal process they are not

introduced at a greater rate than they are removed. This also Implies that the failure rate

decreases with each test run. This suggests that the software is always improving during

the test and repair phase, it is assumed it never gets worse for an extended period of time.

The test procedures are developed such that each fault has approximately the same chance

of being detected through testing. While the personalities of the individual testers suggest

they probably are interested some parts of the software more than others (meaning tested

more thoroughly) the mixture of various testers evens these variances out.

MODELING: The testing and reliability assumptions have already narrowed our specific SR

model options down quite a bit. The failure data is based on calendar time rather than

execution time and it's generally FC data rather than TBF. We assume that new faults are

sometimes introduced when others are being fixed. This means that the number of inherent

faults in the software is variable. It is also practical for us to assume that faults are not

necessarily fixed as soon as they are detected. The failure rate is definitely time

dependent, i.e. the rate at which failures are discovered is vastly different near the end of

system testing then it was near the beginning.

25

So while choosing a specific SR model can only be done on a case by case basis using the

actual failure data, we can hone in on a particular group of SR models using these

assumptions. Applying the Goel scheme is quite straightforward, we're interested in Failure

Count models. However the Musa et al scheme requires some investigation. First, our

interest is in the finite failures category. Even though new faults can be introduced while

others are fixed, the assumption that they are not introduced at a greater rate than they are

removed means that over infinite time it is possible to create "pure" software. It is

impossible to choose a particular class since we can not generalize on a particular failure

distribution. We can however decide on the model type that makes the most sense for

RL/IRD programs. Since we assume imperfect debugging, the Musa et al rule of thumb tells

us to focus on the Poisson-type models. [7] It has been found when new failures can be

introduced, the likelihood of realizing a binomially distributed FC is very low. A binomial

distribution relies on the strict independence of events. If a fault is introduced in one event

and it does not show up in testing until later then this requirement is violated. However the

Poisson distribution does not require such strict adherence to this independence of events.

It requires more of a general, not absolute, independence. Also, the Poisson distribution

has been found to be very applicable to processes in which the number of occurrences is

the primary interest. Characteristics of both of these distributions are given in Appendix A.

The above discussion has narrowed our candidates down to the finite failures category,

Poisson-type, and Failure Count based. This indicates that the model class is the

determining factor in choosing from a group of SR models for the typical RL/IRD program.

This will be the point we start from in the methodology step which focuses on determining

the candidate model group.

26

2.3 System Configuration and Software Testing

The likelihood of requesting a single development organization to deliver an entire system is

shrinking every day. In most cases the customer desires the software product developer to

integrate the product into an existing system. This encourages the development

organization to be primarily concerned with building a software product that satisfies all of

the required functionality. The "system" perspective is missing. Since the responsibility for

establishing a quality system configuration is not so well defined as it is for establishing a

quality software product, configuration problems during installation are likely to occur.

Similarly, since the group responsible for designing and coding the software is usually not

the group responsible for testing it, the responsibility for establishing a quality test system

configuration is not so well defined either. Approximately 75% of all software problems

discovered during testing of a few major RL/IRD programs were due to system configuration

faults. Almost the same exact ratio has been reported for the fielded systems. This

reaffirms the increased attention which must be placed on system configuration issues.

The most convincing statement we can make to establish the importance of system

configuration is found in a definition of software reliability. Software reliability is "the

probability of failure-free operation of a computer program for a specified time in a specified

environment." That specified environment is the system configuration.

The system configuration issue is present in two aspects of software releasability: software

testing and installation in the field. As mentioned earlier, the decision to deliver a software

product is based on more than the success of testing. One of the key concerns is whether

the software can be properly installed on the variety of system configurations which exist in

the field. While the quality of the installation and configuration scripts can be tested, their

27

true effectiveness should be first evaluated during testing. It is virtually impossible to

completely emulate a fielded system and its interfaces in a test environment. Installation

team preparations are vital to program success. Once they know their product and the

systems they must install it on, a critical criterion of software reusability is satisfied.

The role which the system configuration plays in software testing is the main area of focus.

The left side of Figure 1 is a depiction of the traditional analysis, repair, and metrics process

a test finding goes through. On the right is a suggested improvement to the process which

offers increased visibility into configuration faults.

28

Traditional Process
Suggested Process

tester given
feedback that
he/she is in

error - finding
deleted

f configuration
fault is repaired

I via a weH-defined
V process

f
^root cause analysis'
I metrics
I (benefits current

testing cycle)

root cause analysis
metrics

(benefits next
development cycle) /

Figure 1 - Test Finding Analysis. Repair, Metrics

29

2.3.1 Configuration Reliability

The importance of system configuration to software developers suggests the need for the

notion of Configuration Reliability. In our estimation, the fault repair process is a critical

part of engineering reliability. The abundance of system problems attributed to poorly

designed and coded software over the last 30 years has been the prime motivator behind

the relatively new field of software engineering. This field is demanding that software is

developed via a structured, well-defined process. With such a process comes some

tradeoffs. Faults found during testing cannot be fixed and retested as fast as they were in

the past because the development group must follow a number of procedures which have

been proven to increase quality but unarguably add time to the debugging process. A

binary fault needs to go through many stages before a confident repair is introduced to the

test baseline. Its source code needs to be fixed, it needs to be compiled and linked, it must

be unit tested again, and then it must be built into a new test baseline. Industry metrics

have shown that the added time for process compliance is worth it because less future

problems are found and quality goals are realized faster. This process based engineering is

the foundation for ensuring reliable software.

The most common approach to repair configuration faults is adhoc at best. One reason for

this is because the software development industry has not encouraged a well-defined

system configuration management process like they have a software development process.

Industry is united in the concern for software development processes because the issues

are similar no matter what the platform. This is not the case for system configuration

management. The range of platforms described earlier translates into some developers not

needing to be concerned with these issues, whereas other developers must. This seems to

30

have prevented the establishment of an industry-wide system configuration management

process. While many feel that the enforcement of process slows responsiveness down,

such as the discovery of configuration faults and the need to repair them, the nature of

configuration gives it an advantage over software. Scripts can be rewritten or modified and

tested in minutes. File system reorganization can be accomplished in minutes as well. A

process can make this all very efficient and effective and need not slow down the progress.

The fault repair cycle for configuration faults is inherently much faster than it is for

software. If it is adopted with process in mind, the Configuration Reliability for a system

will increase significantly.

2.3.2 Root Cause Analysis

Root Cause Analysis (RCA) can be defined as the identification of the phase, and possibly

the reason, why a fault was introduced into the system. Metrics based reporting on these

can reveal trends and identify areas for process improvement. The different attributes of

software binaries and system configuration suggest that RCA metrics impacts each of the

processes differently. Root cause analysis of binary faults {i.e. introduced in requirements,

design, or coding phase) can realistically only benefit the next development cycle. The

discovery during system testing that most binary faults were introduced in design does not

help the current situation. Except in unique situations, the immediate institution of a new

design approach would not help because the design phase is infrequently encountered once

system testing starts. The information will benefit the next development cycle {e.g. new

software version) but it does not solve the current problem. Configuration issues do not

have this problem. RCA of system configuration faults can almost immediately benefit

current testing efforts because process improvement for this area is fast. We must assume

31

configuration faults cannot be introduced during requirements or design because the system

configuration is defined as a requirement for the software developer to design to and

integrate with. Therefore, configuration faults found during testing can be introduced in

two software engineering phases:

Development:

• Building of automated installation scripts which place binaries into the system

configuration and perform configuration changes to allow binaries to work as designed.

An example of configuration changes could be establishment of file permissions which

fulfill one requirement but prevent another.

Testing:

• Manual procedures for preparing the test system for installation, launching the

automated installation and configuration scripts, and accomplishing other installation

and configuration activities which could not be automated. An example might be the

installation of a database without correctly tuning it.

• Manual configuration changes in response to software test failures. An example might

be creating symbolic links to create needed directory space and establishing an improper

link.

• System generated configuration changes. An example of this might be something as

simple as color map contention.

Process improvements to these areas can be realized in the current testing cycle. A team

focused on improving installation scripts can generate new ones very quickly.

Establishment of pre-test checks of file system conditions only takes as long as typing them

32

and handing copies to testers. A trend of system generated configuration changes might

reveal that a team of system administrators need to spend a few days identifying resource

conflicts between coexisting applications. The implementation of their recommendations

might only take hours and might eliminate days of future test delays due to system

configuration problems. These near term benefits for system configuration process

improvements makes RCA metrics a virtual necessity for programs interested in staying on

schedule.

The generation of a System Problem Report (SyPR) rather than a Software Problem Report

(SwPR) is one way to encourage this approach. By generating a SyPR tester fs forcing a

system view of the problem rather than just a software view. From there the SyPR is

analyzed and in most cases the suspected fault is sent on one of two paths: 1) software

binary fault process-based repair and RCA or 2) configuration fault process-based repair and

RCA. Metrics assessment of the RCA data can provide near-term benefits to system

configuration management which translates into less system configuration problems, which

means more time is spent trying to uncover software binary faults through test failures.

The more efficiently binary faults are discovered, the sooner unobserved faults are found.

This results in a failure trend that is "front loaded" (majority of faults found early) and an

optimized releasability.

33

3. Proposed Methodology

This chapter proposes the new methodology for releasability assessment. We first provide

an overview which includes a depiction of the basic methodology layout and a table

describing the methodology groups and procedures. The next section describes the three

groups and the detailed procedures within each group. Following this, the complete

methodology is illustrated and described. The chapter concludes with an explanation of key

methodology features.

3.1 Overview

The underlying premise of this methodology is that the specific procedures are dependent

on the assessment case chosen. The methodology is organized in the following manner:

Since there are 4 different assessment cases, there are 4 different paths in the

methodology. Each path can be viewed as a series of steps. Each step represents a

particular procedure. The procedures fall into 3 logical categories referred to as groups.

For example, the first step in the methodology is to perform the Graphical Trend

Analysis procedure. This is procedure 1 in the Statistical Analysis group. The next

action in the methodology is step 2. The methodology proceeds in this manner, along a

guided path, until the final step is reached and the estimated release date is generated.

Figure 2 depicts the basic methodology layout. A more detailed depiction will be provided

later in the chapter. Table 2 illustrates the relationship of the groups and procedures and

the naming conventions to be used.

34

case 1

step 5

I step x

estimated
release

date

step 1 \

<> l(procedures
j> from step 2

0 ft Group S

step 3)

<v
step 4 • procedure frc

case 4

step 5 I

$

step 6

$

step 7

-O

step x

0
estimated

release
date

step 5

step 6

step 7

step x

estimated
release

date

step 5

*

step 6

$

step 7

step 8

4>

step x

estimated
release

data

procedures
from

Groups S, M, R

figure 2 - Basic Methodology Layout

35

Table 2 - Overview of Groups and Procedures Used in Methodology

Group

S

Statistical Analysis

Group

M

Modeling

Group

R

Procedure S1 - Graphical Trend Analysis

Procedure S2 - Laplace Test

Procedure S3 - Mathematical Trend Analysis

Procedure M1 - Candidate Models

Procedure M2 - Parameter Estimation

Procedure M3 - Model Evaluation

Procedure R1 - Assessment Case

Procedure R2 - Graph Future Trends

Reusability Assessment Procedure R3 - Release Date Estimation

3.2 Group S - Statistical Analysis

The purpose of the Statistical Analysis group is the characterization of the failure data

pattern using statistical techniques. The failure data could indicate all sorts of statistical

trends (see Appendix A) but our primary interest, however, is the overall direction the trend

is heading, i.e. is it increasing, constant, or decreasing? When the rate of testing is fairly

consistent, an increasing trend indicates a deteriorating failure pattern, constant as steady,

and decreasing as an improving pattern. The bottom-line purpose of a trend test is to

determine if the program is experiencing reliability growth. If this is evident, it is

worthwhile to estimate model parameters and proceed to implement the chosen software

reliability model. Additionally, a powerful statistical analysis technique can be used to

determine the applicability of certain software reliability models and help estimate initial

36

model parameters. If it's evident that reliability decay is occurring, then the project is not

ready to be modeled. In this case, it's back to the drawing board where

development/testing need to be the focus, not testing and modeling, if the failure data

suggests it is in the gray area, i.e. not sure what the trend is, then trend testing technique

is advised. These fall into two broad categories, graphical and mathematical. [12]

3.2.1 Procedure SI - Graphical Trend Analysis

Graphical techniques for trend analysis span from studying simple plots on linear paper to

more complex plots on various types of plotting papers. Observations drawn from these

techniques lack precision but are sometimes adequate for obvious trends. For example, a

linear plot of cumulative change points versus cumulative time which is drastically concave

downwards indicates reliability growth. In this case the change in the failure rate shows an

obviously improving trend. The Duane plot is a method which uses log-log paper to

graphically represent the failure process and highlight general trends in the data. Because

precision is sometimes unnecessary for general trend analysis, we recommend the use of a

graphical technique first (they require very little extra work) followed by mathematical trend

analysis if the trend is not obvious.

3.2.2 Procedure S2 - Laplace Test

The Laplace Test provides two contributions to our methodology: 1) it is very effective for

recognizing trends in data (Procedure S3), and 2) it excludes non-applicable models and

simplifies estimation of initial model parameters with greater accuracy (Procedure M2).

37

The test is based on the Laplace Trend Statistic (LTS). The LTS has been derived for the

Time Between Failure (TBF) data as well as Failure Count (FC) data. [14] Since our focus is

on FC data we will only present the Laplace Test for the FC based LTS.

Let n(1) be the number of failures opened or closed (closed is consider when modeling the

closure rate) in test run 1, n(2) in test run 2, etc. up to n(k) in test run k. The LTS, denoted

u(k), is given as:

u(k) =
_Xf=lO-D«(0-^lf=1«(0

{^sf=1««},/2 (1)

If Ni represents the number of failures opened or closed in a test run / and the failures

process is Poisson (an assumption discussed earlier), then the Ni's are distributed as

independent ordered random variables. Thus, the central limit theorem applies and u(k) can

be approximated by a standard normal distribution where the mean number of failures is

approximately the number of failures discovered in the middle test run. We recommend the

use of a CASE tool for determining and plotting the values of u(t).

3.2.3 Procedure S3 - Mathematical Trend Analysis

Our interest here is determining whether the global (entire u(k) plot) failure trend is steady,

growing, or decaying. A positive slope indicates decay and negative slope indicates

growth. If it is growing or even steady, this usually justifies proceeding on with the

methodology. If the rate is deteriorating then the evaluator should not be concerned with

determining when the release date will be but instead should concentrate on improving the

product and the processes used to develop, test, and/or repair it.

38

We also point out the behavior of the local (sections of u(k) plot) failure trends. These

should only factor into our decision-making if the trend is steady and the most recent local

trend is decay. In this case it is reasonable to proceed on with the methodology but the

estimated release date should be considered very tentative.

If u(k) is decreasing and < 0, we conclude local and global growth.

If u(k) is decreasing and > 0, we conclude local growth but global decay.

If u(k) is increasing and > 0, we conclude local and global decay.

If u(k) is increasing and < 0, we conclude local decay but global growth.

If u(k) is alternatively increasing/decreasing and » 0 we conclude stable reliability is

present.

3.3 Group M - Modeling

The purpose of the Modeling group is selection and tuning of software reliability models.

This is done via three procedures: 1) determine the candidate models, 2) estimate the

parameters for each model such that each model is "tuned", and 3) evaluate the tuned

models against the actual data and select the model with the best fit. The model selection

applies to both opened and closed failure data. The procedures in this group may be used

twice in the course of applying the methodology or they may not be used at all. The

selected case dictates the use or non-use of these procedures.

3.3.1 Procedure M1 - Candidate Models

Background: An overview of software reliability modeling was presented earlier in section

1.3.2. It provided the foundation for the selection of potential models for a particular

39

program. The implementation of this procedure is very dependent on the nature of the

software development environment and the type of test data. There are no equations or

simple yes-no questions which can be offered to guide the evaluator to choosing the correct

model. The best way to demonstrate the accomplishment of this procedure is to explain

how the candidate model group is chosen for traditional RL/IRD efforts. Although, in some

cases it is not possible to decide on a group of models which are viable candidates even for

a development organization with common practices. So while the selection of the best

software reliability model must always be on a case-by case-basis, sometimes even the

candidate model group differs from one program to another in the same organization. This

however is most likely the exception rather than the rule.

We have already stated our assumptions for RL/IRD efforts, compared them with the

characteristics of different types of models, and focused on models that fall into the finite

failures category, Poisson-type, and are suited for Failure Count data.

Procedure: The nature of the failure intensity is the another assumption which can play a

major role in choosing candidate models. Since faults are being introduced and removed as

time passes, we have a varying failure intensity. This means our failure process is also non-

homogeneous. A homogeneous failure process would be one with a constant failure

intensity. This additional assumption attracts us to a particular group of models known as

Non-Homogeneous Process (NHPP) models. An analysis of our remaining assumptions

against the characteristics of each of the well-known NHPP models should provide us with

a core group of models to evaluate. We will describe the procedure in which candidate

models are tested and compared to each other's goodness-of-fit later in our description of

the Modeling group.

40

Musa Basic model

This is a Poisson-type, exponential-ciass model which is based on execution time. This

violates our time assumption, stated in testing discussions in section 1.2.1. because

RL/.RD software is client-server based it does not translate well to execution time.

Therefore, this mode, is not a reasonable candidate. Musa does offer a technique for

modeling execution time into calendar time but its complexity is not suited to this

paper. More information on this can be found in [7].

Musa Basic model hazard function [15]:

z(t) = ¥(N-nc)
l2)

Goel-Okumoto NHPP-EXP model

This is a Poisson-type, exponential-class model which is based on calendar time. It

satisfies all the assumptions for choosing candidate models for RL/.RD efforts. The

model is characterized by two analytical expressions: a mean value function and a

failure intensity function. Since it's exponential-class, the mean value function follows

the form of the exponential distribution. The expressions are based on two parameters:

a - related to the expected number of observed failures, and b - related to the failure

rate. The estimation of these parameters is the critical in fitting this mode! to the actual

failure data so it can be fairly considered during the model evaluation procedure (M3).

[12]

NHPP-EXP model mean value function:

(3) m< <r) = a(l-c"w)

41

NHPP-EXP model intensity function:

Ut) = ^ = abe-* (4)
dt

• Yamada-Ohba-Osaki NHPP-DSS model

This is a Poisson-type, gamma-class model which is based on calendar time. It also

satisfies all our assumptions for choosing candidate models for RL/IRD efforts. Since

this model is really a modification of the Goel-Okumoto NHPP-EXP model, it's also

characterized by the mean value function and failure intensity function. As a gamma-

class model, the mean value function follows the form of the gamma distribution. The

translation of the exponential-class model to the gamma-class really makes sense

because the exponential distribution is a special case of the gamma distribution. Since

the gamma distribution features what can be described as a delayed S-shaped curve,

the authors chose to describe the model as NHPP-DSS (for Delayed S-Shape). The

expressions are based on the same two a and b parameters as the Goel-Okumoto NHPP-

EXP model. [12]

NHPP-DSS model mean value function:

m(0 = a(l-(\ + bt)e-ht) (5)

NHPP-DSS model intensity function:

at

Ohba NHPP-ISS model

42

This model represents yet another modification to the Goel-Okumoto NHPP-EXP model.

Similar to the Yamada-Ohba-Osaki NHPP-DSS model, it is gamma-class, however it is

uniquely characterized by an s-shape with a given inflection. The inflection

characteristic led the authors to describe the mode, as NHPP-ISS (for Inflection S-

Shaped). To accommodate an s-shaped curve with a given inflection the model has

three parameters: a, b, and c, where c is the inflection parameter. [12]

NHPP-ISS model mean value function:

\ — e rj)
m{t) = a- ht 1 + ce

NHPP-ISS model intensity function:

dt (l+ c<r&')

Schneidwind model

This model is Poisson-type and exponential-class and is based on discrete time intervals.

ff the fixed time intervals are considered to be test runs, at first glance this model

seems to be a viable candidate for RL/IRD efforts. However, it has two parameters

which go against our stated assumptions. Firstly, it's based on N, number of faults,

which implies the number is fixed. Secondly, it is also based on the total number of

instructions. We previously discussed how this was no longer regarded as a key factor

in reliability, particularly for client-server. Therefore, this model will not be considered

in the NHPP suite of models for RL/IRD efforts. [16]

43

Schneidwind model mvf:

m(0 = (a/ß)[l-e-ß'] (9)

So in summary, we considered the well-known NHPP models, related them to our

assumptions, and found three candidate models for consideration in RL/IRD efforts:

• Goel-Okumoto NHPP-EXP model

• Yamada-Ohba-Osaki NHPP-DSS model

• Ohba NHPP-ISS model

3.3.2 Procedure M2 - Parameter Estimation

While NHPP models have been found to be very effective software reliability assessment

tools for software development efforts in the system testing phase, their implementation

does not come without a challenge. The behavior of a model is based on two things: 1) its

fundamental analytical expression; and 2) the parameters which "tune" the analytical

expression. Even if the fundamental analytical expression has the theoretical potential to be

a perfect match with the observed failure data, the model will be misleading if the

parameters do not tune it properly. Therefore, a straightforward approach to parameter

estimation is essential to effective SR modeling. Parameter estimation is achieved through

solving numerical equations which are very sensitive to initial values. Popular estimation

techniques include the method of maximum likelihood and the method of least squares.

There also exists an extension to the maximum likelihood estimation which capitalizes on

the Laplace Trend Statistic (LTS) by deriving relationships between the parameters and

trend characteristic points and solving for the initial parameter values. [13]

44

The term "two parameter models" represent the number of "unknown parameters" (which

we will simply refer to as parameters) in the mean value and failure intensity functions. The

functions also include "known parameters" such as the number of faults y at time f. The

traditional technique to estimate the parameter for one parameter models is the

straightforward use of method of maximum likelihood. This is described in detail in [71.

However, with two and three parameter models the traditional maximum likelihood

estimation becomes more difficult. In order to solve for two unknowns, simultaneous

equations are necessary (see below). This implies there are multiple solutions and therefore

less than desirable parameter values can be inadvertently chosen. The difficulty and

possibility of error attributed to parameter estimation for 2-parameter models (e.g. NHPP)

has probably been the reason they have not become as popular as expected. The equations

resulting from the method of maximum likelihood are derived by substituting the

corresponding mean value function into the log-likelihood equation. The parameter

estimation equations for our specific models are:

• NHPP-EXP model - parameter estimation equations

y* (10)
l-i

a=z -b.

t:e-'"- - *,_,<?-*'-
at„e'"" =2(;y;-JV-i) ' _A,M ^e-h,,

substituting a from equation (10) into (11) gives

W"--V,.. ,. ^h,i-^e-h"-'
j _ e-bt„ jL K yi -^'-1 ' e-f»i-x _ e-l"i

(T2)

45

NHPP-DSS model - parameter estimation equations

l-(l + bt„)e-h'"

aty<=X(^-y,1)(1+^i)e_,,l:a+^)e_,i

similarly, substituting a from equation (13) into (14) gives

yjne -Y (V - V) '

• NHPP-ISS model - parameter estimation equations

Assuming c is a known fixed constant.

yn{l+ce-h'")
a~ l-e-"'"

-h, l + c

ate h'"
(l+cer bln

->»• r-t 0-l»M

2,(y, - yH)(e-,,., _ e-6, +,+ce-6, +!+ce-K-, >
.•=i

substituting a from equation (16) into (17) gives

yntne-h,> l + c

\-e~K l + ce'1""
ht> -t --»u rtp-bt> rt. --*,w

(13)

(14)

(15)

(16)

(17)

(18) j

46

The LTS extension to the traditional maximum likelihood estimation makes it easier to select

the right parameter values and obtain the best fit possible to the effort's unique failure data

set. It defines three characteristic points which are associated with the failure intensity

function Xft) of the model. The LTS, u(t), can also be used in place of X(t):

=> Ki = the time at which the derivative of X(t} is maximal and positive. This is

the point of maximal reliability decay.

=> K2 = the time at which X(t) is maximal. This is point where the test data

indicates the shift from reliability decay to reliability growth.

=> K3 = the time at which the derivative of X(tj is minimal and negative. This is

the point of maximal reliability growth.

Armed with the parameter estimation equations we will go through the following sub-

procedure to determine the initial parameter estimates for our models:

a) Determine Model Applicability

b) Determine Characteristic Point Equations

c) Determine Characteristic Point Estimations

d) Estimate Initial Values Using Characteristic Points

e) Estimate Parameters Based on Initial Values

Parameter Estimation: NHPP-EXP Model

47

a) Determine Model Applicability: The NHPP-EXP Model is not applicable for all types

of failure data. For some data it is possible that there is no root for equation (12). The

easiest way to determine this is to look at ulk) in Group S-Procedure 2 and the trend

analysis of ulk) in Group S-Procedure 3. If global decay is present, then because the

NHPP-EXP is a pure growth model, we can conclude it is not applicable. If global

growth is present we can continue on with estimation of the NHPP-EXP parameters.

b) Determine Characteristic Point Equations: Because Xft) for this model is

monotonically decreasing, Ki can not exist. Similarly, K2 and K3 must both equal zero.

Therefore, characteristic points are not identifiable for this model.

c) Determine Characteristic Point Estimations: Not Applicable.

d) Estimate Initial Values Using Characteristic Points: Not Applicable.

e) Estimate Parameters Based on Initial Values: Parameter estimates can be found by

setting b to any positive number (since there are no characteristic points) and using a

root finding technique such as the bisection method with equation (12). An explanation

of this technique can be found in [17]. We determine a by substituting b into (10)

along with appropriate data values. We recommend the use of a CASE tool for this.

Parameter Estimation: IMHPP-DSS Model

a) Determine Model Applicability: Since some decay is inherent within the behavior of

the NHPP-DSS model, we can continue on with the methodology even if u(k) exhibits

global decay. However, it is suggested that the estimated date for release is caveated

as very tentative.

48

b) Determine Characteristic Point Equations: By setting ^^ = 0 (i.e. a peak in the

failure intensity) we can derive that f = 1/b which means that K2 = 1/b or

b = 1/ K2. (19)

If we then take the second derivative of \(t) and set it equal to zero (i.e. the point

where the derivative of X(t) is negative and minimal) we can derive that t = 2/b and K3

= 2/b or

b = 2/ K3. (20)

c) Determine Characteristic Point Estimations: At this point the applier of the

methodology needs to determine the accuracy desired in their model. There are 2 basic

options available:

i) high accuracy - need to use a CASE tool which computes K2 and/or K3 where

u(0) = u(1) = u(n + 1) = 0 and the rest of the u(k) values are determined from equation (1).

ii) some accuracy - K2 and/or K3 can be observed from the data.

d) Estimate Initial Values Using Characteristic Points: If K2 is available, use equation

(19) to determine the initial value for b. If K3 is available, use equation (20) to

determine the initial value for b.

e) Estimate Parameters Based on Initial Values: Parameter estimates can be found by

setting b' to the initial value and using a root finding technique such as the bisection

method with equation (15). An explanation of this technique can be found in [17]. We

49

determine a by substituting b into (13) along with appropriate data values. We

recommend the use of a CASE tool for this.

Parameter Estimation: NHPP-ISS Model

a) Determine Mode! Applicability: Since some decay is inherent within the behavior of

the NHPP-ISS model, we can continue on with the methodology even if u(k) exhibits

global decay. However, it is suggested that the estimated date for release is caveated

as very tentative.

b) Determine Characteristic Point Equations: Beginning with the failure intensity

function and taking its 2nd derivative it has been shown in [18] that

Zj^ln(2 + V3) = ln(2 + V3) m)

"■% — "-1 **3 — "-2

similarly,

K2 ln(It-ß) KiMi*j3\

c = e Kl'Ki = e K,'K2 (22)

c) Determine Characteristic Point Estimations: Similar to the decision for the NHPP-

DSS model, the applier of the methodology needs to determine the accuracy desired in

their NHPP-ISS model. There are 2 basic options available:

50

i) high accuracy - need to use a CASE tool which computes Ki and/or K2 and/or K3

where u(0) = u(1) = u(n +1) =0 and the rest of the u{k) values are determined from

equation (1).

ii) some accuracy - K1 and/or K2 and/or K3 can be observed from the data.

d) Estimate Initial Values Using Characteristic Points: If Ki and K2 are available, use

the appropriate part of equation (22) to fix c and then determine the initial value for b

from the appropriate part of equation (21). If K2 and foare available, use the

appropriate part of equation (22) to fix c and then determine the initial value for b from

the appropriate part of equation (21).

e) Estimate Parameters Based on Initial Values: Parameter estimates can be found by

setting b' to the initial value and using a root finding technique such as the bisection

method with equation (18). An explanation of this technique can be found in [171. We

determine a by substituting b into (16) along with appropriate data values. We

recommend the use of a CASE tool for this.

The detailed expJanation of this procedure reveals 3 key points:

• The estimation of model parameters remains to be by far the most difficult part of

software reliability modeling.

• if software reliability modeling is embraced as a useful tool in software development

efforts, high accuracy model parameters are necessary. Otherwise, the model will not

reliably project future behavior and subsequent releasability assessment decisions will

be based on misleading data.

51

• Practical estimation of high accuracy model parameters requires assistance from CASE

tools.

3.3.3 Procedure M3 - Model Evaluation

This procedure compares the tuned models above to the actual failure data and chooses the

one with the best fit. Just like there were graphical and mathematical options for trend

testing, these same options are available for the model evaluation procedure. A graphical

analysis is simply plotting both the failure data curve and the tuned model curve on the

same graph and comparing how close the model curve fits the actual failure data curve

compared to other models. The graphing is best done with a CASE tool. The model which

provides the best visual fit is generally the best one to choose. However, if a number of

models are close and it's difficult to determine which is clearly the best fit, a mathematical

analysis known as the goodness-of-fit test can be done.

Goodness-of-Fit Test:

Let mi represent the value of the model's mean value function for iteration i. Let ai

represent the actual failure data value for iteration i. A popular test (there are many) is one

which resembles the chi-squared distribution and is based on the quantity:

,=. e.

A small value of X2 indicates a good fit, a large indicates the model is not suitable for the

data or the parameters were improperly chosen. An acceptable level of significance can be

applied to chi-squared tables and then used to determine if the conclusion is trustworthy.

More information on this and other Goodness-of-Fit tests can be found in [18].

52

3.4 Group R - Releasability Assessment

The goal of this group is to estimate when the software will be ready to release to an

outside organization. This decision is aided by the existence of 4 different cases which

provide the foundation for the methodology. While each case's basic purpose is to

compare the situation to established release criterion, each represents a different

combination of 2 factors: 1) assume that new failures are or are not found, and 2) assume

the failure closure rate is simply an average of actual closure data or based on a SR model.

The case chosen by the evaluator determines the methodology path.

3.4.1 Procedure R1 - Assessment Case

• Case 1 - No New Failures & Average Closure Rate (ACR)

This is the combination which is definitely the simplest and most straightforward

manner of assessing releasability. It assumes that testing is complete and thus no

additional failures will be found. The future closure rate is based simply on the average

rate of the existing closure data. A variation of this might include calculating the

average closure rate for the last half of the data.

• Case 2 - New Failures & ACR

This case assumes that new failures will occur in accordance with the selected model

for opened failures. These failures can be introduced as other faults are fixed or they

can be simply faults which were since undetected. The future closure rate is based

simply on the average rate of the existing closure data. A variation of this might

include calculating the average closure rate for the last half of the data.

53

• Case 3 - No New Failures and Model Closure Rate (MCR)

This case assumes that testing is complete and thus no additional failures will be found.

The future closure rate is estimated using the selected model for closed failures. The

use of models for closure rates is one of the strengths of the methodology.

• Case 4 - New Failures and MCR

This case applies models to both failure discovery and closure. Each model is

independently chosen via the methodology.

3.4.2 Procedure R2 - Graph Future Trends

In this procedure the evaluator plots the behavior of the opened and closed cumulative

failure data according to the assumptions for the selected case. There are four possible

graphs, two of which apply to a particular case. We recommend the use of a CASE for

generating these graphs.

• No New Failures (Cases 1 & 3) - since the number of cumulative failures is assumed to

no longer increase, draw a horizontal line from the most current "opened failures" data

point to a time interval well past the scheduled release date.

• New Failures (Cases 2 & 4) - plot the "opened failures model" behavior over the entire

test period to date and continuing up to a time interval well past the scheduled release

date.

• Average Closure Rate (Cases 1 & 2)- extend the actual closure curve with a linear line

which represents the average rate of closure for all failures closed to date. The line

should extend to a time interval well past the scheduled release date.

54

. Modeled Closure Rate (Cases 3 & 4) - plot the "closed failures model" behavior over the

entire test period to date and continuing up to a time interval well past the scheduled

release date.

3.4.3 Procedure R3 - Release Date Estimation

Using the established reusability criterion, which is suggested to be in terms of number of

change points still open, identify the nearest future time where the delta between the open

and closed curves equals the criterion number. If all open failures are required to be closed,

the point of intersection is desired time. This time represents the estimated time interval in

which the software will be releasable to an external organization, such as an independent

test agency or a beta site.

3.5 Methodology Description

The proposed methodology is based on the principle that the chosen assumption case

should dictate the subsequent steps so no steps are unnecessarily accomplished. It is

designed such that a practitioner can follow the steps and estimate the software release

date. Figure 3 is a depiction of the complete methodology. By combining this depiction

with Table 2 (Overview of Groups and Procedures Used in Methodology - section 3.1) and

the comprehensive description of the procedures in sections 3.2-3.4, a practitioner is

empowered with a useful software engineering too!. The iterative use of this methodology

throughout the system testing phase will provide managers with objective information on

their process and product.

55

step 1

S1
opened failures

Conclusive f^

M step

>■* S2

* step
S3

J* step 2

I R1

Case 1

step 3

Case 4

R2
Case 2

step 3

Case 3

step 4

R3

estimated
release date

step 4a

step 4bjj'

~ step 3

Ml
opened failures

▼ step 4

M2
for each model

▼ step .5

6

M3

▼- step

R2

▼ step 7
R3

\

M1
opened failures

step 4a

S2
1 step 3

4

I M1

I closed failures

step 4a

CUD*
▼ step

M2
for each model

a* ▼ step 5

I step 4b M3

▼v step 6

I R2 |
▼* step 7
R3

step 4

4»

a*
step 4b

M2
for each model

' step 5
M3

* step 6

M1
closed failures

step 7 a

step 7b

'step 7

M2
for each model

* step 8

MS

4h
estimated

release date

estimated
release date

* step 9
R2-

'feetep 10
R3]

estimated
release date

Figure 3 - Complete Methodology

56

3.6 Methodology Features

Some of the key features of the methodology include:

Ease of Use - This methodology can be applied by anyone wishing to evaluate their

software and estimate when it will be ready to release. Its step-by-step flow permits even

the most inexperienced software person to implement its straightforward procedures and

obtain results which in the past have been difficult to obtain. Even though the

methodology is described from the perspective of RL/IRD, it is certainly not dependent on

the assumptions relevent for a particular environment. Persons from any software

development environment, no matter how radically different from RL/IRD, can confidently

use this methodology to help estimate reusability. Because it primarily establishes a

process and offers multiple techniques for most of the steps, it allows the evaluator to

apply simple or advanced techniques as desired. If a CASE tool is used, the statistical and

mathematical concepts behind the steps can be entirely transparent from the evaluator.

Self-tailoring - The methodology takes a process approach to the evaluation of a software

product undergoing testing. It builds upon the Goel/Yang approach to software maturity

assessment by identifying additional procedures, describing them in a thorough and

comprehensive manner, and organizing them into a practical methodology which tailors

itself to the specific needs of the evaluator.

Iterative Application - The methodology should be applied iteratively throughout the system

testing phase. Estimations made during early testing will not be as reliable as ones made in

the middle or later.

57

Interpretation of Test Results - The assumptions which help tailor the methodology to the

program are very dependent on the interpretation of the test results data. For instance, if

the test procedures tend to identify significantly more failures early in a test run and runs

very in length, metrics based on fixed increments of time could be considered inconsistent.

This needs to be factored into the trend analysis and modeling. Also, the assignment of

inappropriate weights to failure severity levels can skew the data such that a model cannot

be found which approximates it. However, in most cases the trend analysis stage will filter

out cases where the data is not ready for releasability assessment.

Model Choices - This methodology is not oriented towards any particular type of estimator

model. Any software reliability model can be considered. All of the procedures apply

regardless of the chosen model. NHPP models are described here simply to illustrate

relevant details. The general nature of the methodology and its applicability across all

software engineering domains position it as a viable tool for all software practitioners.

CASE Tools Recommended - The only steps which are potentially challenging to

practitioners are generation of the Laplace statistic value, parameter estimation and

graphing of the models. For these, use of Computer Aided Software Engineering (CASE)

tools is recommended.

58

4. Reusability Assessment of RL/IRD System X

The intent of this chapter is to demonstrate the effectiveness of the methodology by

appiying it to an actua. software development program. The program, denoted System X,

is part of the software development environment described in Chapter 2. The first section

is a pertinent overview of the program. The second section provides an interpretation of

the test results data. The next section steps through the application of the methodoiogy

using the actua. test data from the program. The final section in the chapter states some

observations pertinent to the methodology application and actual program events.

4.1 Overview of System X

The software development process implemented in the development of this release

(denoted X.b) was a tailored version of DoD-STD-2167A. The X.b baseline consists of 11

CSCls totaling approximately 1 million lines of code and is written in C, FORTRAN, SQL,

and Command Scripts. For this specific release, 8 CSCls were modified, resulting in

approximately 75,000 new/modified LOC.

The System X test process collects SPR (i.e. failure) data during the CSC Integration

Testing (CSC IT) phase but is not officially reported until the next phase - Formal

Qualification Testing (FQT). All open SPRs at the conclusion of CSC IT are converted to

FQT SPRs. There are 3 FQT phases: CSCl, System, and IPVT. Each has 3 separate runs

which results in a total of 9 test runs. New FQT phases generally start at the beginning of

a new week but runs within each phase can stop/start in mid-week. The test procedures

are identical for each run within a test phase but the System test procedures are only a

subset of the CSCl procedures and the IPVT procedures are entirely different as they are

59

aimed at performance and stress testing. Each set of test procedures is organized into test

cases which focus on validating a functional area of the software requirements. SPRs have

3 severity levels - priority 1 is a problem which prevents a requirement from being verified,

priority 2 is a problem which prevents the requirement from being satisfied as desired but a

workaround is available, and a priority 3 is a cosmetic or minor problem. The minimum exit

criteria for a test phase is the absence of priority 1 SPRs. The program office test team

reserves the right to fail a test run completed without priority 1 SPRs if they feel the

number and mixture of priority 2/3 SPRs within a test case warrants a complete or partial

repeat of the test run in parallel with continuing efforts to close the open SPRs.

4.2 Failure Data Interpretation

Upon reviewing the testing data, we recognized that the CSC IT to FQT open SPR

conversion causes the data to have an initial value greater than zero. Modeling and

Average Rate estimations must consider these initial values rather than assuming the initial

number of open SPRs is zero. The FQT results data is based on 35 reporting periods and is

in terms of calendar time (weeks). The cumulative failure data received from the System X

program office was not weighted. As with all RL/IRD programs, it was based on 3 severity

levels rather than the 5 severity levels suggested by AFOTEC. The following technique was

used to determine the appropriate weights to assign the severity levels. This is important

because unrealistic weighting schemes can make discovery of accurate models impossibie.

Identify differences between the severity scale/definitions of AFOTEC and System X: Table

3 illustrates the differences between the AFOTEC and System X severity levels.

60

Table 3 - Severity Scales and Definitions for AFOTEC and System X

Severity
Level

priority 1

priority 2

priority 3

priority 4

priority 5

AFOTEC Definition - Weight

System abort - 30 chg pts

System degraded and no work
around - 15 chg pts

System degraded but work
around available - 8 chg pts

System not degraded - 2 chg
pts

Minor change - 1 chg pt

System X Definition

System abort or requirement not verified

Requirement verified via work around

Minor cosmetic problem

N/A

N/A

Establish weighting translation rules and apply:

• System X priority 1 is a combination of AFTOEC priority 1 and 2 and each are equally

likely occurrences during System X testing. Therefore, System X priority 1 weight =

23 chg pts {XI = (30 + 15)/2}.

• System X priority 2 is defined the same as the AFOTEC priority 2. however,

approximately one-third of the workarounds are not acceptable. Therefore, System X

priority 2 weight = 8 chg pts {X2 = 5 + .33(15-5)}.

• System X priority 3 is defined the same as AFOTEC priority 3. Therefore, System X

priority 3 weight = 2 chg pts.

The review of the test data also recognized that no SPRs closed during a period of 11

weeks. If it was due to the entire debugging team being assigned to other efforts during

61

that time, the model will not account for such inactivity. The model will represent closure

data indicating that the debugging team was working but were unable to close any SPRs

during that time.

During discussions with project personnel it was discovered that Configuration Management

Problem Reports (CMPRs) were tracked separately by the developer. If CMPRs were written

when software tests failed due to configuration problems and SPRs were not, then CMPRs

should have been included in the test metrics. However, we can speculate that unless a

concentration of CMPRs were written over a span of consecutive weeks (i.e. thus altering

the global trend), the consistency of not including CMPRs into the failure trend data will

mitigate the potentially misleading data. This is one reason we recommend opening System

Problem Reports (SyPRs) whenever a software test failure occurs.

4.3 Methodology Application

In this section we will perform a reusability assessment of the X.b release by applying the

new methodology to actual test results data received from the System X program office.

All Figures generated during these procedures are included at the end of this section. Table

5 (also included with the Figures) shows the cumulative opened and closed change points

over the release's FQT period. We will be performing a releasability assessment at the end

of week 35, which takes advantage of all the data. Actual releasability assessments should

be done iteratively at various points during FQT.

Step #1: Procedure S1, Graphical Trend Analysis

Figure 4 represents a plot of the cumulative opened failures versus time. It does not

appear to be drastically concave downwards which would reveal reliability growth, the

62

indicator to proceed to R1. Therefore, we proceed on to the next procedure in the

methodology, S2, to conduct the Laplace Test.

Step #1a: Procedure S2, Laplace Test - opened failures

The Laplace Test is based on the Laplace Trend Statistic (LTS), denoted u(k) (see

equation (1)). The plot of u(k) for our data is shown in Figure 5. A CASE tool was

used to generate this plot. It is possible to do this by hand or with a basic spreadsheet

package but it would take a considerable amount of tedious effort.

Step #1b: Procedure S3, Mathematical Trend Analysis

Our purpose at this point is to evaluate whether the system should perform a

reusability assessment or not. Since the graphical trend analysis was inconclusive, we

must determine in this step if u(k) exhibits global growth (reliability growth) or global

decay (reliability decay). Our data is definitely showing global growth. We notice

between weeks 3-7 and 12-32 there are pockets of local decay (positive slope), but

because its effect is minor compared to the global trend it is regarded as negligible. We

also notice that u(k) < 0. Therefore, we can conclude that we have local and global

reliability growth and are suited for a releasability assessment.

Step #2: Procedure R1, Assessment Case

In this step we determine our path through the rest of the methodology. If we assume

that testing will continue (additional failures discovered) then our options narrow down

to Case 2 or Case 4. Otherwise (no new failures), our options become Case 1 or Case

3. Since repairs to release X.b faults do not close failures until regression tests are

63

completed, we will assume continued testing and thus the possibility of finding

additional failures. For instance, possibly one of the repairs could introduce a new

failure.

Given that our options are now Case 2 or Case 4, we need to decide if the closure rate

should be based on a simple average (ACR) or a software reliability model. A look at

the plot of cumulative closed failures vs. time in Figure 6 suggest that the ACR (straight

line between the initial and final closed failures points) would not be a good

approximation of the closure behavior. Therefore, we decide that a modeled closure

rate would be the best choice for the reusability assessment. Through this process of

elimination we have chosen Case 4 and this becomes the path taken through the rest of

the methodology. It is the path pictured on the right hand side of Figure 3.

Step #3: Procedure Ml, Candidate Models - opened failures

This is the step where the assumptions applicable to the System X development

environment are considered and the model group which fits these is chosen. Since

System X follows the conventions of RL/IRD, we can refer to the establishment of the

model group for RL/IRD which was started in section 2.2 and completed in section

3.3.1. Thus, the candidate model group for System X consists of the variations of the

NHPP model: NHPP-EXP, NHPP-DSS, and NHPP-ISS. Their mean value and intensity

functions are given in Table 4.

64

Table 4 - Mea n Value and Intensity Functions for Candidate Models

Model

NHPP-EXP

NHPP-DSS

NHPP-ISS

Mean Value Function

m (t) = a(\-e-hl)

/»/>
ml (t) = a{\-(\ + bt)e "")

m(t) = a
\-e

-hi

\ + ce -hi

Intensity Function

\(t) = abe~

Ut) = a(\-e-h')

X(t) = ab(l + c)
(l + ce-'")-

Step #4: Procedure WI2, Parameter Estimation

This is easily the most difficult part of the methodology, it is also one of the mast

critical. In this step we will estimate the parameters for each of the candidate models

such that they are as close a fit as possible to the cumulative opened failures data.

Note: steps 4a and 4b are not necessary since we already accomplished Procedures S2

and S3 and generated u(k).

NHPP-EXP:

a) Determine Model Applicability: Reviewing our plot of ufk) (Figure 5) and the trend

analysis of u(k) from Procedure S3 we can conclude that global growth is present we

can continue on with estimation of the NHPP-EXP parameters.

b) Determine Characteristic Point Equations: Not Applicable.

c) Determine Characteristic Point Estimations: Not Applicable.

65

d) Estimate Initial Values Using Characteristic Points: Not Applicable.

e) Estimate Parameters Based on Initial Values: If we set the initial value of b to a

positive number and use the bisection method in [17] for equation (12) we obtain

b = .037 (this was obtained using a CASE tool which implemented the bisection method

for finding roots). Substituting this into equation (10) and using our data gives us an

estimated value of a = 2906.

We now need to estimate the parameters for the other candidate models.

NHPP-DSS:

a) Determine Model Applicability: Not necessary.

b) Determine Characteristic Point Equations: From equations (19) and (20) we observe

that b=1/K2 = 2/K3.

c) Determine Characteristic Point Estimations: If we decide that some accuracy is

acceptable, we can estimate Kz = 7 from Figure 5 (point of decay-> growth shift). It

turns out that our CASE tool found to = 4.88.

d) Estimate Initial Values Using Characteristic Points: Using either value of K2 and part

b) above, we obtain an initial value around b = .17.

e) Estimate Parameters Based on Initial Values: Using 6'=. 17 to find the root (purpose

of the bisection method) for equation (15) we obtain b = .13. Substituting this into

equation (13) and using our data gives us an estimated value of a =2233.

NHPP-ISS:

66

a) Determine Model Applicability: Not necessary.

b) Determine Characteristic Point Equations: From equations (21) and (22) we observe

that

b =
ln(2 + V3) ln(2 + V3) c = e^^-=e «'-**

A:, - A:, *3 - K2

o) Determine Characteristic Point Estimations: If we decide that some accuracy is

acceptable, we have already observed *i = 7 from Figure 5. We also seem to be able to

observe both K, and Ks from the u(k) plot in Figure 5. As the value where the plot is

maximal and positive, it appears that K, is around 2.5. It turns out that our CASE tool

found/f> = 2.74.

d) Estimate Initial Values Using Characteristic Points: Using K, and Kz from above in

equation (21) we obtain an initial value around b = .29. Using these values to determine

c in equation (22), we obtain c- 7.76. It turns out that our CASE toot found c = 5.24.

e) Estimate Parameters Based on Initial Values: Using b'=.29 and c = 5.24 to find the

root for equation (18) we obtain o=.124. Substituting A = .124 and c = 5.24 into

equation (16) and using our data gives us an estimated value of a = 2276.

Step #5: Procedure M3, Model Evaluation

Substituting our estimated a, b, and c parameters for each respective model in Table 5,

and plotting it against our actual data we obtain Figure 7. This plot visually indicates

that the exponential model (NHPP-EXP) is the best fit. Using the goodness-of-fit test

we could ensure this was true. Our CASE tool found that the sum of squared error (i.e.

67

goodness-of-fit test) was much lower for the NHPP-EXP than both other models.

Therefore, the NHPP-EXP model is our model which represents the cumulative opened

failures.

Step #6: Procedure M1, Candidate Models - closed failures

The candidate model group for the closed failures is the same as the opened failures:

NHPP-EXP, NHPP-DSS, and NHPP-ISS.

Step #7: Procedure M2, Parameter Estimation

In this step we will estimate the parameters for each of the candidate models such that

they are as close a fit as possible to the cumulative closed failures data. Since we did

not determine u(k) for the closed data we need to perform steps 7a and 7b, which are

Procedures S2 and S3.

Step #7a: Procedure S2, Laplace Test - closed failures

The plot of u(k) for our data is shown in Figure 8.

Step #7b: Procedure S3, Mathematical Trend Analysis

Our purpose at this point is to evaluate if u(k) exhibits global growth (reliability growth)

or global decay (reliability decay). Figure 8 indicates our data is showing global growth.

However, the amount of local decay is significantly greater than the LTS (i.e. u(k)) for

closed failures. We also notice that u{k) < 0. Therefore, we can conclude that we

have local and global reliability growth.

Step #7 (Resumed): Procedure M2, Parameter Estimation

68

NHPP-EXP:

a) Determine Model Applicability: Since Step 7b concluded that global growth is

present for our closed failure LTS, the NHPP-EXP model is applicable.

b) Determine Characteristic Point Equations: Not Applicable.

c) Determine Characteristic Point Estimations: Not Applicable.

d) Estimate Initial Values Using Characteristic Points: Not Applicable.

e) Estimate Parameters Based on Initial Values: If we set the initial value of b to a

positive number to find a root for equation (12) we obtain 6 = .044. Substituting this

into equation (10) and using our data gives us an estimated value of a = 3605.

NHPP-DSS:

a) Determine Model Applicability: Not necessary.

b) Determine Characteristic Point Equations: From equations (19) and (20) we observe

that b=1/K2 = 2/K3.

c) Determine Characteristic Point Estimations: If we decide that some accuracy is

acceptable, we can estimate K* = 2 from Figure 8. It turns out that our CASE tool found

Ki = 2.0 as well.

d) Estimate Initial Values Using Characteristic Points: Using to = 2 and part b) above,

we obtain an initial value of b = .5.

69

e) Estimate Parameters Based on Initial Values: Using b ' = .5 to find the root for

equation (15) we obtain b= 1.08e-07. Substituting this very small number into

equation (13) and using our data gives us an extremely large estimated value of

a = 4.13e14. It would not have been necessary to calculate this if a CASE tool were

not available because such as large value of a indicates this model is not even close to

the actual data.

NHPP-ISS:

a) Determine Model Applicability: Not necessary.

b) Determine Characteristic Point Equations: From equations (21) and (22) we observe

that

Z;_ln(2 + V3) = ln(2 + >/3) and c = /f^ = /^
K2 - Kx K3- K2

c) Determine Characteristic Point Estimations: While the option of choosing "some

accuracy" versus "high accuracy" is available when the characteristic points are easily

observable, when there are multiple candidate points for each value it is best to use a

CASE tool. The tool is able to compute Ki and/or K2 and/or Ks where

u(0) = u(1) = u(n + 1) = 0 and the rest of the u(k) values are determined from equation (1).

A weighted average is used to account for multiple u(k) values which fit the

characterisitic point conditionsBased on the u(k) depicted in figure 8, the CASE tool

found Kz=16.8 and Ks =8.9.

70

d) Estimate Initial Values Using Characteristic Points: Using K, and to from above in

equation (21) we obtain an initial value around 6 = -. 17. Using these values to

determine c in equation (22), we obtain c= 13.9.

e) Estimate Parameters Based on Initial Values: Using b'=-. 17 and c = 13.9 to find the

root for equation (18) we obtain 6 = .136. Substituting b = . 136 and c = 13.9 into

equation (16) and using our data gives us an estimated value of a = 3226.

Step #8: Procedure M3, Model Evaluation

Substituting our estimated a, b, and c parameters for each respective model in Table 5,

and plotting it against our actual data we obtain Figure 9. This plot visually indicates

that the exponential model (NHPP-EXP) is the best fit. Using the goodness-of-fit test

we could ensure this was true. Our CASE tool found that the sum of squared error {i.e.

goodness-of-fit test) was much lower for the NHPP-EXP than both other models.

Therefore, the NHPP-EXP model is also our model which represents the cumulative

closed failures.

Step #9: Procedure R2, Graph Future Trends

Since we already graphed our opened and closed models, we simply need to

superimpose these on each other along with the actual data. Figure 10 depicts the

actual data, the models, and the ACR (although we did not consider ACR for this case)

generated by the methodology.

Step #10: Procedure R3, Release Date Estimation

71

Based on Figure 10 it is observable where the opened failures model and closed failures

model intersect. They intersect at approximately week 53. However, this is when the

models estimate there will be no remaining open SPRs. Given schedule constraints this

is not a realistic requirement. Therefore, the System X program office could decide that

100 open change points is an acceptable quality level. Using this criteria, it appears

from the graph in Figure 10 that week 48 is approximately when 100 open change

points will be reached. A CASE tool graph which shows only the modeled open failure

rate and the modeled closure rate and ACR is shown in Figure 11. It is easier to see

from this graph that week 48 is indeed the estimated time when release X.b will have

only 100 change points open against it. Translating this to SPRs suggests a possible

mixture of 8 severity level 2 SPRs and 18 level 3 SPRs.

72

Table 5 - Release X.b Cumulative Test Results Data

1

8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Cumulative Cumulative
Reporting Opened Closed

Period Change Pts Change Pts
1761

Change
Point
Delta

803 958
1879 1040 839
1964 1546 418
2139 1710 429
2171 1945 226
2325 2118 207
2453 2270 183
2611 2270 341
2691 2270 421
2754 2270 £fQ*t

2772 2270 502
2780 2270 510
2837 2270 567
2906 2270 636
2986 2270 716
2956 2270 686
3010 2270 740
3042
3078

2270 772
2350 726

3156 2557 599
3226 2784 442
3303 2855 448
3319 2878 441
3351 2901 450
3452 2963 489
3460 2963 497
3491 2979 512
3507 3027 480
3555 3214 341
3565 3459 106
3646 3482 164
3717 3482 235
3789 3482 307
3815 3482 333
3843 3613 230

73

Figure 4 - open failures

4000

74

Figure 5 - u(k) open

Trend

4.00

2.00

0.00 •

-2.00 r

-4.00 !■

0.00 5.00 1OJ00 15J0O 20X0 2SJD0 30J30 35JX>

75

Figure 6 - ciosed failures

4000 r

35001-

3000 «
c
'o
0.

«2500
<o

O
<D

»2000
CO
3
E"
o

1500

1000-

500 10 15 20
TIrne

25 30 35

76

of Faults xlO: Figure 7 - open models
1 actual

cÜayied-Sf"
infiecnon-S

OJX) 10.00 20JD0 30JD0

77

Figure 8 - u(k) closed

-45.00

Time

0.00 5JJ0 1OJ00 15XJ0 20X0 25.00 30.00 35D0

78

Figure 9 - closed modeis
#ofFauitsxl03

expcnennai
SeJayed-Sf"
inflttafrnn-S

0.00 1OJ00 2O00 30ÜDO

79

Rgure 10 - open/closed
modeis & actual

of Faults xiO:

5.50

Originated
! Closed

Originated to Date
M7>aeWDnglnated"
UppeTGmit
Lower Limit
Model-aosed~~
Model Of ~
Average CR

0JD0 10JD0 2O00 30.00 40.00 50.00 6OJ00
Tune

80

of Faults x 103

Figure 11 - closure
projections

I i i i
tTojecxea unopcnca.

-4 Model CR
1.05 t—

i *. | i I I* rerageCR
1.00 —

i •
i •. 1 I

0.95 i-
1

i

t \ 1 i i i
0.90 1 >-

\ i t
i

0.85 i -
t 1
1 V . l\ I i i I

0.80 H

0-75 l-

0.70 I

\! \ 1 i i
i

i I
\\ \ i
X \ i. i i i

0.65
\ \ i i I

i

0.60 1 \ \l i I
035

\\ i I
030

0.45

j...
1 S\ i i I

I
1
1 i\

i
I

0.40
\ i i |

035
^

030 i
025

1

.

0.2C

0.15

.! i i ^

40JD0 5OD0 60Ü00 7OD0 8OJ0O

81

4.4 Observations

The objective of this chapter was to prove the effectiveness of the new methodology by

performing a reusability assessment of the X.b software. The ease of following through

the procedures coupled with the conclusive answers indicates the objective was reached.

The methodology is well structured yet flexible enough to adapt to the characteristics of a

specific program. System X is currently progressing through in-house Beta testing with

release X.b. Since this testing does not officially qualify as software released to an external

organization (the test facility is operated by another group within Rome Laboratory), it

appears that the System X program office is committed to not releasing software much

earlier than they should. They will probably release the software before week 48, but this

is due to external pressures and customer acceptance of software with some known faults

and documented workarounds. Personnel from System X have expressed much interest in

the outcome of this methodology research. Frequent application of the methodology will

benefit both sides of the problem. Software development programs will become more

aware of techniques to help them in their development efforts. Similarly, methodology

researchers will have the opportunity to fine tune some of the details and obtain near real-

time feedback on methodology improvements.

82

5. Conclusions and Recommendations

This final chapter summarizes the key contributions of this thesis and provides some

recommendations for future research and application.

5.1 Conclusions

New Methodology for Reusability Assessment: A methodology based on a fundamental

approach to software testing and software reliability was proposed. It provides software

developers a practical tool rooted in sound theoretical principles which can help them make

better informed decisions on the release of their product.

Reusability Assessment of an Actual Development Effort: The methodology was applied

to a Rome Laboratory effort in order to demonstrate its effectiveness and adaptability to a

real software development environment. The reusability assessment provided detailed

estimates on software reliability progression and produced results beneficial to both the

development effort and the research efforts.

Contributions to Software Testing and System Configuration Management: An

investigation into the benefits of analyzing system configuration problems and their impacts

to software testing was performed. Techniques such as Root Cause Analysis and the

concept of Configuration Reliability were introduced. These were proposed as contributors

to achieving releasable software earlier.

Examination of Testing and Software Reliability Modeling: An extensive review of the

testing and software reliability modeling fields was conducted. Many realistic assumptions

were discussed and a number of detailed observations were presented.

83

5.2 Recommendations

Reusability Improvement: The methodology's contributions are limited to assessing the

current trends in the software testing and estimating when the software will be releasable

to external entities. There is a need for techniques which suggest ways developers can

optimize reusability. The proposed methodology provides information not easily obtainable

before, if this information can be transformed to enable development environments to

dynamically reorganize their efforts, there will be substantial gains in the software industry.

Configuration Reliability: As computers continue to host increasing numbers of software

applications the system configuration issue will become larger and larger. A more detailed

investigation into the field of Configuration Reliability is necessary. Many software

development efforts and deliveries are hampered by system configuration problems.

Techniques which assist in managing configurations better would benefit most software

developers.

CASE Tool: An automated tool which facilitates the application of the methodology in

government, academic, and industry markets has great potential. The integration of such a

tool into the Internet environment would enable many software developers to benefit from

new software reliability techniques designed for practical application.

84

Appendix A: Background Material on Probability and Related

Concepts

This appendix is written in more of a casual style than the thesis body. It is intended for

readers unfamiliar with software reliability and some of its commonly used terms. The list

of topics addressed below is by no means complete. Additionally, the topics which are

included are not described in detail. Readers interested in more thorough and formal

discussions of these topics are referred to sources such as [10] and [191.

Relationship between probability and software reliability

Software reliability is a way of quantifying the 'ability' of the software to perform as it is

intended to. Once the acceptable ability is established, anyone who builds, funds, or needs

to use this software wants to know when the 'in-development' product will be available for

reliable use. Software reliability modeling is a way of predicting when the software that's

being developed and/or tested will reach that acceptable level. The model is a probabilistic

expression based on statistical data gathered over the course of the development and/or

testing activities. Therefore, in order to understand modeling it's important to understand

some key aspects of probability.

Random Variables
When a statistical experiment is conducted, the primary interest is in the overall description

of the outcome rather than the specific events. A random variable is a function which

provides this overall description, for example, time to failure of a product. In this case,

"failure" is the 'statistical interest'. There are 2 types of random variables, discrete and

85

continuous. Since software operates over time, the random variable used in the software

reliability world is the continuous random variable.

Probability Distributions

A probability distribution is a set of probabilities corresponding to the values that a random

variable can take on. It's simply a way of describing random behavior. In our case, we use

the random variable T to represent the time to experiencing/detecting failure in the

software. The cumulative distribution function (cdf) is a formula which describes the

probability of the random variable (T) being the 'statistical interest' over the range of T.

The probability density function (pdf) is a formula which describes the probability as the

unit of the random variable is varied. In our case it's time and the pdf describes the

probability of a software failure at specific points in time.

Stochastic Processes

A stochastic process is a sequence of random variables whose values vary with respect to

time. It can also be described as a process in which events occurring over a period of time

are influenced by random effects. There are different types of stochastic processes: strictly

stationary, independent, renewal, and wide-sense stationary are just a few.

The renewal process is one in which events can occur, their effects be altered (i.e. a "fix"),

and not affect the rest of the process (i.e. the notion of 'independence'). If we consider

the number of renewals (fixes) required in an interval, we have the more specific case of

the renewal counting process. Notice the similarities to the software development/testing

situation. Focusing in even more, if we consider the times between renewals to have an

exponential distribution then the process is called the "Poisson Process". This process

displays a distribution known as the Poisson distribution (also see below).

86

Statistics and Parameters

A statistic is simply a value computed from a sample based on a random variable. As

discussed before, this sample has a probability distribution, which is usuaily based on some

constant(s). This constant is referred to as a 'parameter'. The primary goal of statistics is

to make inferences about the parameter using the sample information. One popular statistic

is known as the 'sample mean' and another is the 'sample variance'. A parameter is often

expressed as a particular statistic. For example, the parameter X represents the 'average-

number of failures occurring in a given interval of time.

Important Distributions
Two common discrete (sampling in units of time) distributions are Poisson and binomial.

Common continuous distributions include exponential, Weibull, Pareto, and gamma.

Poisson distribution

The Poisson distribution is applicable to many real-world situations. Examples include time

between equipment breakdown, traffic on telephone lines, frequency of insurance claim

arrivals, and time between software failures. As discussed from a process point of view

above, the Poisson distribution is based in part on the exponential distribution. In this case,

since we have macro and micro distributions, we have 2 'statistical interests' as well.

While the number of failures in a unit of time make up the macro distribution (Poisson), the

amount of time between failures makes up the micro distribution (exponential).

Binomial Distribution

This distribution is based on the Bernoulli process. It is based on trials in which each event

is a success or failure, each is independent, and the probability of 'success' remains

87

constant. Translating this into the software domain, 'success' actually means discovering

a failure, trials translate to software tests, and the micro distribution is constant (not

exponential like Poisson).

Exponential Distribution

Patterns in customer arrivals, telephone conversation periods, and life of electronic

components generally follow this distribution, it is probably the most widely used

distribution in the field of reliability. One unique characteristic of this distribution is the fact

that it's memoryless. the time until the next event is completely independent of the time

elapsed since the last event.

Weibull Distribution

This distribution is popular for time to failure or life length of components. The Weibull

distribution is characterized by 2 parameters which when varied can represent the variations

of the exponential distribution and normal distribution. It is considered to be the most

widely-used in the parametric family of failure distributions.

Pareto Distribution

This distribution is more obscure than the others. It presents a distribution which

approaches the axis much quicker than the others. This is the result of 'improvements'

being made to portions of the sample where the impact is greatest, i.e. it is not treated as a

uniform sample. This distribution is applicable to instances where some failures are

recognized to be more likely than others and the repair process focuses on these.

Gamma Distribution

88

This distribution is actually a more general case of the exponential distribution. When one

of the parameters is set to 1 the resulting distribution is exponential.

89

Bibliography

[I] Air Force Software Technology Support Center (STSC). Software Guidelines for
Successful Acquisition and Management of Software Intensive Systems, Vol 1. 4-3
Jun 1996.

[2] A.M. Neufelder. Ensuring Software Reliability. 5:48, 11:213, 2:10. Marcel Dekker
Inc. 1993.

[3] Cusumano and Selby. Microsoft Secrets, pg 316-323. 1996

[4] J.D Musa. Software Reliability Engineering for Managers. Proc. 1996 EFDPMA
Software Metrics Conference. Jun. 1996.

[5] W.H. Farr. A Survey of Software Reliability and Estimation. NSWC-TR-82-171,
1983.

[6] A.L. Goel. Software Reliability Modeling and Assessment. IEEE Video Conference
Notes, Oct. 1991

[7] J.D. Musa, A. lannino, K. Okumoto. Software Reliability: Measurement, Prediction,
Application. 1:5-15, 9, 10, 12, 14. McGraw-Hill, 1987.

[8] A.L. Goel. An Introduction to Software Testing and Reliability. IEEE Video
Conference Notes, Oct. 1991

[9] Rome Laboratory. Methodology for Software Prediction. RADC-TR-87-171. 1987.

[10] K.S. Trivedi. Probability & Statistics with Reliability, Queuing, and Computer Science
Applications. chap3. Prentice-Hall, 1982.

[II] Air Force Operational Test and Evaluation Center. AFOTEC Pamphlet 99-102: Vol 6,
Software Maturity Evaluation Guide, Mar. 1996.

[12] A.L. Goel and K.Z. Yang. Software Maturity Assessment for OT&E. Technical
Report, Syracuse University, Sep. 1995

[13] A.L. Goel, K.Z. Yang, R. Paul. Parameter Estimation for Software Reliability Models
Based on Delayed S-Shaped NHPP. In Proc. Symp. on Interface: Computer Science
and Statistics, 1992.

[14] O. Gaudoin. Optimal Properties of the Laplace trend test for software reliability
models. IEEE Trans. Reliability. 41(4):525-532. Dec. 1992.

[15] A.L. Goel. Software Reliability Models: Assumptions, Limitations, and Applicability.
IEEE Trans, on Software Engineering, Dec. 1985.

[16] M. Xie and M. Zhao. The Schneidewind Software Reliability Model Revisited. IEEE 0-
8186-2975-4/92. Apr. 1992

[17] W.H. Press, S.A. Teukolsky, B.P. Flannery, and W.T. Vetterling. Numerical Recipes
and C: The Art of Scientific Computing. Cambridge Press, pg 261. 1990.

[18] A.L. Goel and K.Z. Yang. Software Reliability and Readiness Assessment Based on
the Non-Homogeneous Poisson Process, pg 36-41. Technical Report, Syracuse
University, Oct. 1996.

90

[19] R.E. Walpole and R.H. Myers. Probability and Statistics for Engineers and Scientists,
pg 339. Macmillan Publishing Co. 1985.

91

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in ail
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

